证明∫sinx/sinx+cosxdx=∫cosx/sinx+cosxdx=π/4 ,积分上限是π/2,下限是0

YBudge
高粉答主

推荐于2019-09-17 · 每个回答都超有意思的
知道小有建树答主
回答量:1541
采纳率:100%
帮助的人:41.4万
展开全部

证明如下图:

常用积分法:

1、换元积分法

如果

(1)  ;

(2)x=ψ(t)在[α,β]上单值、可导;

(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,

则 

2、分部积分法

设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式

扩展资料:

定积分的几个性质:

1、积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

2、所有在 Z上可积的函数构成了一个线性空间。黎曼积分的意义上,所有区间[a,b]上黎曼可积的函数f和g都满足:

3、所有在可测集合Z上勒贝格可积的函数f和g都满足:

4、在积分区域上,积分有可加性。黎曼积分意义上,如果一个函数f在某区间上黎曼可积,那么对于区间内的三个实数a, b, c,有

5、如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

陈jin
2014-02-01 · TA获得超过6005个赞
知道大有可为答主
回答量:3337
采纳率:75%
帮助的人:1184万
展开全部
换元法令t=(π/2) -x,那么x=(π/2)-t,dx=-dt,积分限t上限是0,下限是(π/2)
∫[0,π/2] [sinx/(sinx+cosx)]dx=
∫[π/2,0] sin((π/2)-t)/(sin((π/2)-t)+cos((π/2)-t))d((π/2)-t)
=∫[π/2,0] -sint/(cost+sint)dt
=∫[0,π/2] cost/sint+cost dt
=∫[0,π/2] cosx/(sinx+cosx) dx

又因为∫[0,π/2] [sinx/(sinx+cosx)]dx+∫[0,π/2] cosx/(sinx+cosx) dx
=∫[0,π/2] 1 ×dx
=π/2

所以
∫[0,π/2] sinx/(sinx+cosx)dx=∫cosx/(sinx+cosx)dx=π/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2018-03-13
展开全部

追问

追答
相等的,在定积分中只要积分限不变的话,变量可随意更换
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式