高中数列问题~~急~~急~~~急~~~
已知数列{an}的前n项和是Sn,且Sn+1\2an=11.求通项公式2.设bn=㏒(1-S(n+1)),求适合方程1/(b1b2)+1/(b3b4)+……+1/(bnb...
已知数列{an}的前n项和是Sn,且Sn+1\2an=1
1.求通项公式
2.设bn=㏒(1-S(n+1)),求适合方程1/(b1b2)+1/(b3b4)+……+1/(bnb(n+1))=25/51的n的值 展开
1.求通项公式
2.设bn=㏒(1-S(n+1)),求适合方程1/(b1b2)+1/(b3b4)+……+1/(bnb(n+1))=25/51的n的值 展开
展开全部
(1)
Sn+1/2*an=1
令n=1得 S1+1/2*a1=a1+1/2*a1=3/2*a1=1推出a1=2/3;
n≥2时,S(n-1)+1/2*a(n-1)=1;
两式相减得:an+1/2*an-1/2*a(n-1)=0,
化简得an=1/3*a(n-1)
知{an}是以a1=2/3为首项,q=1/3为公比的等比数列,an=2/3*(1/3)^n=2/(3^n);
(2)
bn=log[1-S(n+1)]=log[1/2*a(n+1)]=log[1/(3^(n+1))]=-(n+1)log3=-(n+1);
1/[bn*b(n+1)]=1/[(n+1)*1/(n+2)]=1/(n+1)-1/(n+2)
裂项相消得:
1/(b1b2)+1/(b2b3)+……+1/(bnb(n+1))
=1/2-1/3+1/3-1/4+…….+ 1/(n+1)-1/(n+2)
=1/2-1/(n+2)
=n/(2n+4)=25/51
解得:n=100
(补充,对数的底数应该是3吧,bn那串中间还有一个+1/(b2b3))
Sn+1/2*an=1
令n=1得 S1+1/2*a1=a1+1/2*a1=3/2*a1=1推出a1=2/3;
n≥2时,S(n-1)+1/2*a(n-1)=1;
两式相减得:an+1/2*an-1/2*a(n-1)=0,
化简得an=1/3*a(n-1)
知{an}是以a1=2/3为首项,q=1/3为公比的等比数列,an=2/3*(1/3)^n=2/(3^n);
(2)
bn=log[1-S(n+1)]=log[1/2*a(n+1)]=log[1/(3^(n+1))]=-(n+1)log3=-(n+1);
1/[bn*b(n+1)]=1/[(n+1)*1/(n+2)]=1/(n+1)-1/(n+2)
裂项相消得:
1/(b1b2)+1/(b2b3)+……+1/(bnb(n+1))
=1/2-1/3+1/3-1/4+…….+ 1/(n+1)-1/(n+2)
=1/2-1/(n+2)
=n/(2n+4)=25/51
解得:n=100
(补充,对数的底数应该是3吧,bn那串中间还有一个+1/(b2b3))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询