如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O
展开全部
解:①证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC,
∴OD=OE,
在△DOB和△EOC中,
∠DOB=∠EOC,OD=OE,∠ODB=∠OEC,
∴△DOB≌△EOC(ASA),
∴OB=OC.
②连接AO.
∵CD⊥AB,BE⊥AC,
∴∠CEB=∠BDO=90°;
又∵∠COE=∠BOD(对顶角相等),
∴∠C=∠B(等角的余角相等);
∴在△CEO和△BDO中,
∠C=∠B,OC=OB(已知),∠COE=∠EOD
∴△CEO≌△BDO(ASA),
∴OE=OD(全等三角形的对应边相等),
∴点O在∠BAC的平分线上;
∴OD=OE,
在△DOB和△EOC中,
∠DOB=∠EOC,OD=OE,∠ODB=∠OEC,
∴△DOB≌△EOC(ASA),
∴OB=OC.
②连接AO.
∵CD⊥AB,BE⊥AC,
∴∠CEB=∠BDO=90°;
又∵∠COE=∠BOD(对顶角相等),
∴∠C=∠B(等角的余角相等);
∴在△CEO和△BDO中,
∠C=∠B,OC=OB(已知),∠COE=∠EOD
∴△CEO≌△BDO(ASA),
∴OE=OD(全等三角形的对应边相等),
∴点O在∠BAC的平分线上;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询