1/(x^4-2x^2+1)的不定积分怎么算???谢谢
2个回答
2013-12-04
展开全部
原式=∫dx/(1-x^2)^2,
设x=sint,dx=costdt,
cost=√(1-x^2),tant=x/√(1-x^2),sect=1/√(1-x^2)
原式=∫costdt/(cost)^4
=∫(sect)^3dt
=∫sectd(tant)
=sect*tant-∫tantd(sect)
=sect*tant-∫tant*tant*sectdt
=sect*tant-∫[(sect)^3-sect]dt
∫(sect)^3dt=sect*tant/2+(1/2)∫sectdt
=sect*tant/2+(1/2)ln|sect+tant|+C1
=(1/2)[x/√(1-x^2]/√(1-x^2)+(1/2)ln|1/√(1-x^2)+x/√(1-x^2)|+C1
=(1/2)x/(1-x^2)+(1/2)ln|(x+1)/√(1-x^2)|+C1
=(1/2)x/(1-x^2)+(1/4)ln|(1+x)/(1-x)|+C.
设x=sint,dx=costdt,
cost=√(1-x^2),tant=x/√(1-x^2),sect=1/√(1-x^2)
原式=∫costdt/(cost)^4
=∫(sect)^3dt
=∫sectd(tant)
=sect*tant-∫tantd(sect)
=sect*tant-∫tant*tant*sectdt
=sect*tant-∫[(sect)^3-sect]dt
∫(sect)^3dt=sect*tant/2+(1/2)∫sectdt
=sect*tant/2+(1/2)ln|sect+tant|+C1
=(1/2)[x/√(1-x^2]/√(1-x^2)+(1/2)ln|1/√(1-x^2)+x/√(1-x^2)|+C1
=(1/2)x/(1-x^2)+(1/2)ln|(x+1)/√(1-x^2)|+C1
=(1/2)x/(1-x^2)+(1/4)ln|(1+x)/(1-x)|+C.
追问
将x换成sint定义域就变了!不过还是谢谢你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询