对弧长的曲线积分与对坐标的曲线积分的区别?

希望详细一点,不要粘贴复制的。最好可以举例说明哈,谢谢。... 希望详细一点,不要粘贴复制的。最好可以举例说明哈,谢谢。 展开
月下的淡然
推荐于2017-05-22 · TA获得超过2639个赞
知道小有建树答主
回答量:601
采纳率:100%
帮助的人:590万
展开全部
说简单点:对弧长的积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分。从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘。
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线L积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线L。这个是对弧长的积分。
(2)设想有一质点在变力F(r)(F和r都是矢量,有大小有方向)的作用下,沿着轨迹S运动,如何求出某一段时间内变力F对质点所做的总功?只要把变力F(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹S积分就可以得到力对质点做的总功,即W=∫F(r)·dr,积分路径是质点运动的轨迹S。这个是对坐标的积分。(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移)。当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力F在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分。这就反映出两种积分的关系:投影关系。
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
匿名用户
2014-04-26
展开全部
以物理概念去理解,对弧长积分相当于摩擦力做功,功的大小取决于弧的长度,对坐标积分相当于重力做功,功的大小取决于坐标变化
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-04-26
展开全部
今天在粪坑边上看到一只蛆宝宝,白白胖胖的好萌好欢畅,我看见它弓着身子向我爬来,真的好Q啊!于是我将它放在手中玩弄着,好柔软的皮肤啊!我拿起它仔细的欣赏着,发现它身上有一圈圈的纹路尾处和头部有一条线连着。哇!好神奇的动物啊!看着看着不经意间口水留了出来于是我把它放进嘴里。哇!一股神奇的味道我从未尝到过的味道。为了更久的体验这种味道我没有一口咬下。我让蛆宝宝在我的舌尖齿间游走。它调皮的在我嘴里翻滚着,蠕动着,弄得我痒痒的。终于我忍不住了一口咬下,只听见啪的一声蛆宝宝爆裂了,一股脓水冲刺整个舌尖。味道美极了!我带着满足的笑容走出了茅房!吃什么饭啊别吃了!呃。。。好饱!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-04-26
展开全部
二者微分式不同吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式