这道题有点难,请帮忙指点一下!
1个回答
展开全部
(1)
证明:∵四棱锥E-ABCD,底面△ABD为正三角形,CB=CD,
△BCD为等腰三角形
取BD中点O,连接AC,O在AC上
∵EC⊥BD
∴EO⊥底面于O,AC⊥BD
∴△BED为等腰三角形
∴EB=ED
(2)
证明:∵∠BCD=120°,M为线段AE的中点
过D作DF⊥AB于F,F为AB中点
连接DM,MF
由(1)可知∠DBC+∠DBA=90°
∴BC⊥AB==>BC//DF
∴MF//BE
∴面DMF//面BCE
∵DM∈面DMF
∴DM//平面BEC
证明:∵四棱锥E-ABCD,底面△ABD为正三角形,CB=CD,
△BCD为等腰三角形
取BD中点O,连接AC,O在AC上
∵EC⊥BD
∴EO⊥底面于O,AC⊥BD
∴△BED为等腰三角形
∴EB=ED
(2)
证明:∵∠BCD=120°,M为线段AE的中点
过D作DF⊥AB于F,F为AB中点
连接DM,MF
由(1)可知∠DBC+∠DBA=90°
∴BC⊥AB==>BC//DF
∴MF//BE
∴面DMF//面BCE
∵DM∈面DMF
∴DM//平面BEC
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询