关于轴对称的初一数学题!急死我也!!快点啦~~
第一题1.将矩形ABCD沿着对角线AC对折,则三角形AFC是等腰三角形。变形:若矩形ABCD中,AB=6,AD=3,求三角形AFC的面积。2.将矩形ABCD沿着EF对折,...
第一题1.将矩形ABCD沿着对角线AC对折,则三角形AFC是 等腰 三角形。
变形:若矩形ABCD中,AB=6,AD=3,求三角形AFC的面积。
2.将矩形ABCD沿着EF对折,使点B与点D重合,若AB=8,AD=10,求折痕EF的长。
第二题 如图7,矩形纸片 的边长分别为 .将纸片任意翻折(如图8),折痕为 .( 在 上),使顶点 落在四边形 内一点 , 的延长线交直线 于 ,再将纸片的另一部分翻折,使 落在直线 上一点 ,且 所在直线与 所在直线重合(如图9)折痕为 .
(1)猜想两折痕 之间的位置关系,并加以证明.
(2)若 的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕 间的距离有何变化?请说明理由.
(3)若 的角度在每次翻折的过程中都为 (如图10),每次翻折后,非重叠部分的四边形 ,及四边形 的周长与 有何关系,为什么? 展开
变形:若矩形ABCD中,AB=6,AD=3,求三角形AFC的面积。
2.将矩形ABCD沿着EF对折,使点B与点D重合,若AB=8,AD=10,求折痕EF的长。
第二题 如图7,矩形纸片 的边长分别为 .将纸片任意翻折(如图8),折痕为 .( 在 上),使顶点 落在四边形 内一点 , 的延长线交直线 于 ,再将纸片的另一部分翻折,使 落在直线 上一点 ,且 所在直线与 所在直线重合(如图9)折痕为 .
(1)猜想两折痕 之间的位置关系,并加以证明.
(2)若 的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕 间的距离有何变化?请说明理由.
(3)若 的角度在每次翻折的过程中都为 (如图10),每次翻折后,非重叠部分的四边形 ,及四边形 的周长与 有何关系,为什么? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询