共轭复根怎么求

 我来答
帐号已注销
推荐于2019-10-17 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:175万
展开全部

共轭复根的求法:对于ax²+bx+c=0(a≠0)若Δ<0,该方程在实数域内无解,但在虚数域内有两个共轭复根,为

共轭复根是一对特殊根。指多项式或代数方程的一类成对出现的根。若非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。

举例:r*r+2r+5=0,求它的共轭复根。

解答过程:

(1)r*r+2r+5=0,其中a=1,b=2,c=5。

(2)判别式△=b²-4ac=4-20=-16=(±4i)²。

(3)所以r=(-2±4i)/2=-1±2i。

扩展资料:

一元二次方程的一般形式如下:

确定判别式,计算Δ=b²-4ac(希腊字母,音译为戴尔塔)。

(1)若Δ>0,该方程在实数域内有两个不相等的实数根:;


(2)若Δ=0,该方程在实数域内有两个相等的实数根:


参考资料:百度百科-共轭复根

一粥美食
高能答主

2021-06-26 · 专注为您带来别样视角的美食解说
一粥美食
采纳数:7300 获赞数:462703

向TA提问 私信TA
展开全部

非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。

共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

共轭复根求解公式:

通常出现在一元二次方程中。若根的判别式△=b2-4ac<0, ,方程有一对共轭复根。

根据一元二次方程求根公式韦达定理:x1,2=-b±√b2-4ac/2a,当b2-4ac<0时, 方程无实根,但在复数范围内有2个复根。复根的求法为x1,2=-b±i√4ac-b2/2a(其中i是虚数,i2=-1)。

由于共轭复数的定义是形如a±bi(b≠0)的形式,称a+bi与a-bi(b≠0)为共轭复数。

另一种表达方法可用向量法表达:x1=pejΩ,x2=pe-jΩ其中p=√a2+b2,tanΩ=b/a。

由于一元二次方程的两根满足上述形式,故一元二次方程在b2-4ac<0时的两根为共轭复根。

根与系数关系:x1+x2=-b/a,x1+x2=c/a。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
浅醉江月
高赞答主

2014-03-04 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:85%
帮助的人:8826万
展开全部
a-bi 与 a+bi 为共轭复数
一个一元二次方程,如果在实数域内无解,也就是判别式小于0
那么它的两个复根一定是 共轭复根原因 :根据韦达定理
两根和 两根积都为实数 而每个根有都是负数 那么只可能
两根分别为a-bi 和a+bi
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东子0528
2018-04-05 · TA获得超过9624个赞
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:27.6万
展开全部
  • 一元二次方程的一般形式如下:

    确定判别式,计算Δ(希腊字母,音译为戴尔塔)。

    若Δ>0,该方程在实数域内有两个不相等的实数根:;

    若Δ=0,该方程在实数域内有两个相等的实数根:

    若Δ<0,该方程在实数域内无解,但在虚数域内有两个共轭复根,为

  • 虚数的概念

    在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。

    可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。

  • 共轭复数概念

    共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。同时, 复数zˊ称为复数z的复共轭(complex conjugate).

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式