已知函数f(x)=-x^2+|x| 画出函数的图像并指出函数的单调区间:判断并证明函数的奇偶性;求

函数在[-1,2]上的最值,并指出取得最值时相应的x的值... 函数在[-1,2]上的最值,并指出取得最值时相应的x的值 展开
 我来答
数学优质资源
2013-11-22 · TA获得超过913个赞
知道答主
回答量:374
采纳率:100%
帮助的人:78.5万
展开全部

f(x)=-x^2+|x|的图像为:

所以函数的单调增区间为:(0,+无穷)

                   单调递减区间:(-无穷,0)

函数为偶函数:f(-x)=f(x)

函数在[-1,2]上的,其最大值为 x=-1/2 时,其值为:1/4

                               其最小值为:x=2 时,其值为:-2

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式