在锐角三角形ABC中,角A.B.C所对的边分别为a.b.c
且满足4a的平方cosB-2acosB=a的平方+b的平方-c的平方。(1)求角B的大小。(2)设向量m=(sin2A,-cos2C),向量n=(-根号3,1),求向量m...
且满足4a的平方cosB-2acosB=a的平方+b的平方-c的平方。(1)求角B的大小。(2)设向量m=(sin2A,-cos2C),向量n=(-根号3,1),求向量m*向量n的取值范围
展开
1个回答
2014-01-16
展开全部
(1)∵4a^2cosB-2accos B=a^2+b^2-c^2
由余弦定理:
a^2+b^2-c^2=2abcosC
∴4a^2cosB-2accos B=2abcosC
∴2acosB-ccos B=bcosC
由正弦定理:a=2RsinA ,b=2RsinB, c=2sinC
∴2sinAcosB=sinBcosC-cosBsinC
∴2sinAcosB=sin(B+C)=sinA
∴cosB=1/2, B∈(0,π)
∴ B=π/3
(2) 0<A+C<2π/3
C=2π/3-A<π/2
π/6<A<π/2, π/3<2A<π,
向量m·向量n
=(sin 2A,-cos 2C)·(—√3,1)
=-√3sin 2A-cos (4π/3-2A)
=-√3sin 2A-cos4π/3cos2A-sin4π/3sin2A
=-√3/2sin 2A+1/2cos2A
=cos(2A+π/3)
∵ 2π/3<2A+π/3<4π/3
∴ -1≤cos(2A+π/3)<-1/2
∴向量m·向量n范围是[-1.-1/2)
由余弦定理:
a^2+b^2-c^2=2abcosC
∴4a^2cosB-2accos B=2abcosC
∴2acosB-ccos B=bcosC
由正弦定理:a=2RsinA ,b=2RsinB, c=2sinC
∴2sinAcosB=sinBcosC-cosBsinC
∴2sinAcosB=sin(B+C)=sinA
∴cosB=1/2, B∈(0,π)
∴ B=π/3
(2) 0<A+C<2π/3
C=2π/3-A<π/2
π/6<A<π/2, π/3<2A<π,
向量m·向量n
=(sin 2A,-cos 2C)·(—√3,1)
=-√3sin 2A-cos (4π/3-2A)
=-√3sin 2A-cos4π/3cos2A-sin4π/3sin2A
=-√3/2sin 2A+1/2cos2A
=cos(2A+π/3)
∵ 2π/3<2A+π/3<4π/3
∴ -1≤cos(2A+π/3)<-1/2
∴向量m·向量n范围是[-1.-1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询