
设Sn为数列{an}的前n项和,且Sn=n(a1+an)/2,求证:数列{an}为等差数列
1个回答
展开全部
因为Sn=n(a1+an)/2,
所以2Sn=n(a1+an),
所以2a(n+1)=2S(n+1)-2Sn
=(n+1)a1+(n+1)a(n+1)-na1-nan,
即(n-1)a(n+1)=nan-a1,
所以na(n+2)=(n+1)a(n+1)-a1,
两式相减得na(n+2)+nan=2na(n+1),
所以a(n+2)+an=2a(n+1),
所以{an}为等差数列
所以2Sn=n(a1+an),
所以2a(n+1)=2S(n+1)-2Sn
=(n+1)a1+(n+1)a(n+1)-na1-nan,
即(n-1)a(n+1)=nan-a1,
所以na(n+2)=(n+1)a(n+1)-a1,
两式相减得na(n+2)+nan=2na(n+1),
所以a(n+2)+an=2a(n+1),
所以{an}为等差数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询