如图,在三角形abc中,ab=ac,p是bc边上一点,PE丄AB于E,PF丄AC于F,BD是AC边上

如图,在三角形abc中,ab=ac,p是bc边上一点,PE丄AB于E,PF丄AC于F,BD是AC边上的高。试探究PE+PF与BD之间的数量关系。... 如图,在三角形abc中,ab=ac,p是bc边上一点,PE丄AB于E,PF丄AC于F,BD是AC边上的高。试探究PE+PF与BD之间的数量关系。 展开
Bug魔丶378
2014-09-10 · TA获得超过311个赞
知道答主
回答量:151
采纳率:83%
帮助的人:52.9万
展开全部
法一:
过P作PO⊥BD与O
易证四边形OBFP为矩形
则OB=PF
∵AB=AC
∴∠ABC=∠C
∵PE⊥AB,PF⊥AC,
∴∠EPB+∠ABC=90°,∠FPC+∠C=90°
∴∠EPB=∠FPC
则Rt△BEPQ≌Rt△BOP
∴BE=BO
∴BD=BO+OD=PF+PE
法二:
延长PF到O使FO=PE
∵AB=AC
∴∠ABC=∠C
∵PE⊥AB,PF⊥AC
∴△BEP∽△CFP
∴PE/PF=BP/CP
∴OF/PF=BP/CP
又PE⊥AB,PF⊥AC
∴PF∥BD
∴BP/CP=DF/CF
则△PFC∽△OFD
∴∠FPC=∠O
又∠EPB=∠FPC
∴∠O=∠FPC
则Rt△ODF≌Rt△PBE
∴OD=BP
又PF∥BD
则四边形BDOP为平行四边形
∴BD=PO
又PO=PF+OF=PF+PE
∴BD=PF+PE

是否可以解决您的问题?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mbcsjs
2014-09-10 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
连接PA
∵PE⊥AB,PF⊥AC,BD⊥AC
AB=AC
∴S△ABP+S△ACP=S△ABC
1/2AB×PE+1/2AC×PF=1/2BD×AC
∴PE+PF=BD
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式