一个有n个元素的集合,有多少种不同的自反的二元关系?

哆嗒数学网
2010-11-01 · 教育领域创作者
个人认证用户
哆嗒数学网
采纳数:2537 获赞数:18813

向TA提问 私信TA
展开全部
一个二元关系与一个关系矩阵是一一对应的,所以只要满足条件的二元关系的关系矩阵数目即可。
如果即为对称又为反对称的二元关系,其关系只能是主对角线上元素,故有2^n种;
而反对称的二元关系矩阵满足,若Rij=1则Rji=0(i≠j),即Rij×Rji=0(i≠j)。主对角线上的元素可以任取0或1,取法有2^n种。矩阵左下半部与右上半部元素为(n^2-n)/2,记为m,则满足Rij×Rji=0(i≠j)的矩阵数为:
C(0,m)( C(0,m) + C(1,m) + ... + C(m,m) )+
C(1,m)( C(0,m-1) + C(1,m-1)+ ... + C(m-1,m-1) )+
...
...
...
C(m-1,m)( C(0,1) + C(1,1) ) +
C(m,m)C(0,0) = C(0,m)×2^m + C(1,m)×2^(m-1) +...+ C(m-1,m)×2 + C(m,m)×1 = 3^m = 3^[(n^2-n)/2]
注:C(i,j)表是从j个元素中取出i个元素的组合数(i<=j)
故反对称的二元关系有2^n×3^[(n^2-n)/2]
11108965
2010-11-01 · TA获得超过3422个赞
知道大有可为答主
回答量:4598
采纳率:0%
帮助的人:2912万
展开全部
离散数学 2^(n-1) 每个元素都有两个位置可以选择,一共有2^n 两边的位置重复了一倍再除以2即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2010-11-01
展开全部
C(2,n)种
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式