高等数学定积分的题目,求大神
1个回答
展开全部
证:设 x=a-t 则x=0时,t=a;x=a时,t=0. dx=-dt
∫[0,a]f(x)dx
=-∫[a,0]f(a-t)dt
=∫[0,a]f(a-t)dt
=∫[0,a]f(a-x)dx
计算:
∫[0,π/4](1-sin2x)dx/(1+sin2x)
=∫[0,π/4]{1-sin[2(π/4-x)]}dx/{1+sin[2(π/4-x)]}
=∫[0,π/4][1-sin(π/2-2x)]dx/[1+sin(π/2-2x)]
=∫[0,π/4][1-cos(2x)]dx/[1+cos(2x)]
=∫[0,π/4][2sin^2(x)]dx/[2cos^2(x)]
=∫[0,π/4]tan^2(x)dx
=∫[0,π/4][sec^2(x)-1]dx
=tanx|[0,π/4]-x|[0,π/4]
=1-π/4
∫[0,a]f(x)dx
=-∫[a,0]f(a-t)dt
=∫[0,a]f(a-t)dt
=∫[0,a]f(a-x)dx
计算:
∫[0,π/4](1-sin2x)dx/(1+sin2x)
=∫[0,π/4]{1-sin[2(π/4-x)]}dx/{1+sin[2(π/4-x)]}
=∫[0,π/4][1-sin(π/2-2x)]dx/[1+sin(π/2-2x)]
=∫[0,π/4][1-cos(2x)]dx/[1+cos(2x)]
=∫[0,π/4][2sin^2(x)]dx/[2cos^2(x)]
=∫[0,π/4]tan^2(x)dx
=∫[0,π/4][sec^2(x)-1]dx
=tanx|[0,π/4]-x|[0,π/4]
=1-π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询