简单的高数题,用定积分求平面图形的面积
求由曲线y=x^2,直线y=4所围成的平面图形的面积求由曲线y=1/x,直线y=x和x=3所围成的平面图形的面积要解答过程,最好能画图,thanks~...
求由曲线y=x^2,直线y=4所围成的平面图形的面积
求由曲线y=1/x,直线y=x和x=3所围成的平面图形的面积
要解答过程,最好能画图,thanks~ 展开
求由曲线y=1/x,直线y=x和x=3所围成的平面图形的面积
要解答过程,最好能画图,thanks~ 展开
1个回答
展开全部
1) y=x^2与y=4的交点为(-2,4), (2,4)
所以面积=∫(-2,2)(4-x^2)dx
=[4x-x^3/3](-2,2)
=2[8-8/3]
=32/3
2)y=1/x与y=x的交点为(1, 1)
面积=∫(1,3)(x-1/x)dx
=[x^2/2-lnx](1,3)
=(9/2-ln3)-(1/2-ln1)
=4-ln3
所以面积=∫(-2,2)(4-x^2)dx
=[4x-x^3/3](-2,2)
=2[8-8/3]
=32/3
2)y=1/x与y=x的交点为(1, 1)
面积=∫(1,3)(x-1/x)dx
=[x^2/2-lnx](1,3)
=(9/2-ln3)-(1/2-ln1)
=4-ln3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询