如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别
如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC...
如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,则∠AFG与α的数量关系是______.
展开
1个回答
展开全部
(1)∵∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中
,
∴△ADC≌△ABE(SAS),
∴DC=BE;
(2)连接AG.
∵△ADC≌△ABE,
∴∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=
DC,BF=
BE,
∴DG=BF.
在△ADG和△ABF中
,
∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=80°,
∴∠GAF=80°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=50°.
答:∠AFG=50°;
(3)∵∠DAB=a,
∴∠GAF=a.
∵∠GAF+∠AFG+∠AGF=180°,
∴a+2∠AFG=180°,
∴∠AFG=90°-
a..
故答案为:90°-
a.
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中
|
∴△ADC≌△ABE(SAS),
∴DC=BE;
(2)连接AG.
∵△ADC≌△ABE,
∴∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=
1 |
2 |
1 |
2 |
∴DG=BF.
在△ADG和△ABF中
|
∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=80°,
∴∠GAF=80°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=50°.
答:∠AFG=50°;
(3)∵∠DAB=a,
∴∠GAF=a.
∵∠GAF+∠AFG+∠AGF=180°,
∴a+2∠AFG=180°,
∴∠AFG=90°-
1 |
2 |
故答案为:90°-
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询