已知{a n }是等差数列,其前n项和为S n ,已知a 3 =11,S 9 =153,(1)求数列{a n }的通项公式;(2)设
已知{an}是等差数列,其前n项和为Sn,已知a3=11,S9=153,(1)求数列{an}的通项公式;(2)设bn=2an,证明:{bn}是等比数列,并求其前n项和An...
已知{a n }是等差数列,其前n项和为S n ,已知a 3 =11,S 9 =153,(1)求数列{a n }的通项公式;(2)设 b n = 2 a n ,证明:{b n }是等比数列,并求其前n项和A n .(3)设 c n = 1 a n a n+1 ,求其前n项和B n .
展开
酷与喔402
2015-01-04
·
TA获得超过118个赞
知道答主
回答量:184
采纳率:0%
帮助的人:66.2万
关注
(1)∵{a n }是等差数列,a 3 =11,S 9 =153, ∴9a 5 =153, ∴a 5 =17, ∴其公差d= =3, ∴a n =a 5 +(n-5)×d=17+(n-5)×3=3n+2; (2)∵b n = 2 a n ,a n =3n+2, ∴ = 2 a n+1 -a n =2 d =2 3 =8,且b 1 =2 5 =32, ∴{b n }是以32为首项,8为公比的等比数列, ∴其前n项和A n = (8 n -1); (3)∵a n =3n+2, ∴ = = ( - ), ∴B n = [( - )+( - )+…+( - )] = ( - ) = . |
收起
为你推荐: