已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)
已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)在(-∞,-1]上为减函数,并且在(-1,0)上...
已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)在(-∞,-1]上为减函数,并且在(-1,0)上为增函数.
展开
1个回答
展开全部
g(x)=f[f(x)]=f(x2+1)=(x2+1)2+1=x4+2x2+2.
G(x)=g(x)-λf(x)=x4+2x2+2-λx2-λ=x4+(2-λ)x2+(2-λ),G(x1)-G(x2)=[x14+(2-λ)x12+(2-λ)]-[x24+(2-λ)x22+(2-λ)]=(x1+x2)(x1-x2)[x12+x22+(2-λ)]
由题设当x1<x2<-1时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>1+1+2-λ=4-λ,
则4-λ≥0,λ≤4当-1<x1<x2<0时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)<1+1+2-λ=4-λ,
则4-λ≤0,λ≥4故λ=4.
G(x)=g(x)-λf(x)=x4+2x2+2-λx2-λ=x4+(2-λ)x2+(2-λ),G(x1)-G(x2)=[x14+(2-λ)x12+(2-λ)]-[x24+(2-λ)x22+(2-λ)]=(x1+x2)(x1-x2)[x12+x22+(2-λ)]
由题设当x1<x2<-1时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>1+1+2-λ=4-λ,
则4-λ≥0,λ≤4当-1<x1<x2<0时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)<1+1+2-λ=4-λ,
则4-λ≤0,λ≥4故λ=4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询