如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90

如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④S△... 如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④S△ADM=12S梯形ABCD;⑤M到AD的距离等于BC的一半;其中正确的有(  )A.2个B.3个C.4个D.5个 展开
 我来答
寿之松4004
推荐于2016-05-14 · TA获得超过121个赞
知道答主
回答量:115
采纳率:0%
帮助的人:54.8万
展开全部

过M作ME⊥AD于E,
∵∠DAB与∠ADC的平分线相交于BC边上的M点,
∴∠MDE=
1
2
∠CDA,∠MAD=
1
2
∠BAD,
∵DC∥AB,
∴∠CDA+∠BAD=180°,
∴∠MDA+∠MAD=
1
2
(∠CDA+∠BAD)=
1
2
×180°=90°,
∴∠AMD=180°-90°=90°,∴①正确;
∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,
∴MC=ME,
同理ME=MB,
∴MC=MB=ME=
1
2
BC,∴②正确;
∴M到AD的距离等于BC的一半,∴⑤正确;
∵由勾股定理得:DC2=MD2-MC2,DE2=MD2-ME2
又∵ME=MC,MD=MD,
∴DC=DE,
同理AB=AE,
∴AD=AE+DE=AB+DC,∴③正确;
∵在△DEM和△DCM中
DE=DC
DM=DM
ME=MC

∴△DEM≌△DCM(SSS),
∴S三角形DEM=S三角形DCM
同理S三角形AEM=S三角形ABM
∴S三角形AMD=
1
2
S梯形ABCD,∴④正确;
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式