
如图,已知二次函数y=ax2+2x+3的图象与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D
如图,已知二次函数y=ax2+2x+3的图象与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC...
如图,已知二次函数y=ax2+2x+3的图象与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC=1,(1)求a、k的值;(2)探究:在该二次函数的图象上是否存在点P(点P与点B、C补重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请你说明理由.
展开
1个回答
展开全部
(1)由直线y=kx+3与y轴相交于点C,得C(0,3)
∵tan∠OBC=1
∴∠OBC=45°∴OB=OC=3
∴点B(3,0)(1分)
∵点B(3,0)在二次函数y=ax2+2x+3的图象上
∴9a+6+3=0(2分)
∴a=-1(3分)
∴y=-x2+2x+3=-(x-1)2+4
∴顶点D(1,4)(4分)
又∵D(1,4)在直线y=kx+3上
∴4=k+3
∴k=1
即:a=-1,k=1.(5分)
(2)在二次函数y=-x2+2x+3的图象上存在点P,使得△PBC是以BC为一条直角边的直角三角形(6分)
由(1)可知,直线y=x+3与x轴的交点为E(-3,0)
∴OE=OC=3
∴∠CEO=45°
∵∠OBC=45°
∴∠ECB=90°(7分)
∴∠DCB=90°
∴△DCB是以BC为一条直角边的直角三角形,且点D(1,4)在二次函数的图象上,则点D是所求的P点(8分)
方法一:设∠CBP=90°,点P在二次函数y=-x2+2x+3的图象上,则△PBC是以BC为一条直角边的直角三角形,
∵∠CBO=45°
∴∠OBP=45°设直线BP与y轴交于点F,则F(0,-3)
∴直线BP的表达式为y=x-3(9分)
解方程组
得
或
由题意得,点P(-2,-5)为所求.
综合①②,得二次函数y-x2+2x+3的图象上存在点P(1,4)或
P(-2,-5),使得△PBC是以BC为一条直角边的直角三角形(10分)
方法二:在y轴上取一点F(0,-3),则OF=OC=3,由对称性可知,
∠OBF=∠OBC=45°
∴∠CBF=90°设直线BF与二次函数y=-x2+2x+3的图象交于点P,由(1)知B(3,0),
∴直线BF的函数关系式为y=x-3(以下与方法一同)(9分)
解方程组
∵tan∠OBC=1
∴∠OBC=45°∴OB=OC=3
∴点B(3,0)(1分)
∵点B(3,0)在二次函数y=ax2+2x+3的图象上
∴9a+6+3=0(2分)
∴a=-1(3分)
∴y=-x2+2x+3=-(x-1)2+4
∴顶点D(1,4)(4分)
又∵D(1,4)在直线y=kx+3上
∴4=k+3
∴k=1
即:a=-1,k=1.(5分)
(2)在二次函数y=-x2+2x+3的图象上存在点P,使得△PBC是以BC为一条直角边的直角三角形(6分)
由(1)可知,直线y=x+3与x轴的交点为E(-3,0)
∴OE=OC=3
∴∠CEO=45°
∵∠OBC=45°
∴∠ECB=90°(7分)
∴∠DCB=90°
∴△DCB是以BC为一条直角边的直角三角形,且点D(1,4)在二次函数的图象上,则点D是所求的P点(8分)
方法一:设∠CBP=90°,点P在二次函数y=-x2+2x+3的图象上,则△PBC是以BC为一条直角边的直角三角形,
∵∠CBO=45°
∴∠OBP=45°设直线BP与y轴交于点F,则F(0,-3)
∴直线BP的表达式为y=x-3(9分)
解方程组
|
得
|
|
由题意得,点P(-2,-5)为所求.
综合①②,得二次函数y-x2+2x+3的图象上存在点P(1,4)或
P(-2,-5),使得△PBC是以BC为一条直角边的直角三角形(10分)
方法二:在y轴上取一点F(0,-3),则OF=OC=3,由对称性可知,
∠OBF=∠OBC=45°
∴∠CBF=90°设直线BF与二次函数y=-x2+2x+3的图象交于点P,由(1)知B(3,0),
∴直线BF的函数关系式为y=x-3(以下与方法一同)(9分)
解方程组
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|