已知数列{an}的首项a1=a,其前n和为Sn,且满足Sn+Sn-1=3n2(n≥2).若对任意的n∈N*,an<an+1恒成立,
已知数列{an}的首项a1=a,其前n和为Sn,且满足Sn+Sn-1=3n2(n≥2).若对任意的n∈N*,an<an+1恒成立,则a的取值范围是______....
已知数列{an}的首项a1=a,其前n和为Sn,且满足Sn+Sn-1=3n2(n≥2).若对任意的n∈N*,an<an+1恒成立,则a的取值范围是______.
展开
1个回答
展开全部
由条件Sn+Sn?1=3n2(n≥2)得Sn+1+Sn=3(n+1)2,
两式相减得an+1+an=6n+3,
故an+2+an+1=6n+9,两式再相减得an+2-an=6,
由n=2得a1+a2+a1=12,a2=12-2a,
从而a2n=6n+6-2a;n=3得a1+a2+a3+a1+a2=27,a3=3+2a,从而a2n+1=6n-3+2a,
由条件得
,
解之得
<a<
,
故答案为:(
,
)
两式相减得an+1+an=6n+3,
故an+2+an+1=6n+9,两式再相减得an+2-an=6,
由n=2得a1+a2+a1=12,a2=12-2a,
从而a2n=6n+6-2a;n=3得a1+a2+a3+a1+a2=27,a3=3+2a,从而a2n+1=6n-3+2a,
由条件得
|
解之得
9 |
4 |
15 |
4 |
故答案为:(
9 |
4 |
15 |
4 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询