设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0
设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0,试问X=Xo是否为极值点?为什么?又(Xo,F(Xo))是否为...
设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0,试问X=Xo是否为极值点?为什么?又(Xo,F(Xo))是否为拐点?为什么?
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询