设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0

设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0,试问X=Xo是否为极值点?为什么?又(Xo,F(Xo))是否为... 设y=F(x)在X=Xo的某领域内具有三阶连续导数,如果F'(X)=F''(X)=0,而F'''(X)≠0,试问X=Xo是否为极值点?为什么?又(Xo,F(Xo))是否为拐点?为什么? 展开
277267118
2010-11-01 · 超过18用户采纳过TA的回答
知道答主
回答量:34
采纳率:0%
帮助的人:0
展开全部
二阶为零,三阶不为零,则X0两侧二阶导数变号,为拐猛激点…而且一阶为零枝缺袜,也可以得到零是一阶导数的极值,两侧符号不扮正变,函数单调性也保持不变,不是函数极值点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式