已知数列{a n }满足a 1 =1,a n+1 =2a n +1(n∈N * ).(Ⅰ)求证:数列{a n +1}为等比数列,并求数列{
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)求证:数列{an+1}为等比数列,并求数列{an}的通项公式;(Ⅱ)若数列{cn}的通项公式为cn=...
已知数列{a n }满足a 1 =1,a n+1 =2a n +1(n∈N * ).(Ⅰ)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式;(Ⅱ)若数列{c n }的通项公式为c n =2n,求数列{a n ?c n }的前n项和S n ;(Ⅲ)若数列{b n }满足 4 b 1 -1 4 b 2 -1 … 4 b n -1 =( a n +1 ) b n (n∈ N * ) ,且b 2 =4.证明:数列{b n }是等差数列,并求出其通项公式.
展开
展开全部
(Ⅰ)∵a n+1 =2a n +1(n∈N*).a n+1 +1=2(a n +1),----------(3分) {a n +1}是以a 1 +1=2为首项,2为公比的等比数列.∴ a n +1= 2 n . 即 a n = 2 n -1(n∈N*) .--------------(4分) (II)∵ a n = 2 n -1 ,c n =2n,∴ a n c n =2n( 2 n -1) ∴S n =a 1 c 1 +a 2 c 2 +a 3 c 3 +…+a n c n =2[(1×2+2×2 2 +3×2 3 +…+n×2 n )-(1+2+3+…+n)]-----(6分) 设 A=1×2+2×2 2 +3×2 3 +…+n×2 n ① 则2A=1×2 2 +2×2 3 +…+(n-1)×2 n +n×2 n+1 ② ①-②得-A=1×2+1×2 2 +1×2 3 +…+1×2 n -n×2 n+1 =
∴A=(n-1)×2 n+1 +2 ∴ S n =(n-1)× 2 n+2 +4-n(n+1) --------------(9分) (Ⅲ)∵ 4 b 1 -1 4 b 2 -1 … 4 b n -1 =( a n +1 ) b n ,∴ 4 ( b 1 + b 2 +…+ b n )-n = 2 n b n , ∴2[(b 1 +b 2 +…+b n )-n]=nb n ,①2[(b 1 +b 2 +…+b n +b n+1 )-(n+1)]=(n+1)b n+1 . ② ②-①,得2(b n+1 -1)=(n+1)b n+1 -nb n ,--------------(11分) 即(n-1)b n+1 -nb n +2=0,③nb n+2 -(n+1)b n+1 +2=0. ④ ④-③,得nb n+2 -2nb n+1 +nb n =0, 即b n+2 -2b n+1 +b n =0,∴ b n+2 - b n+1 = b n+1 - b n (n∈ N * ) ,∴{b n }是等差数列.--------------(13分) ∵b 1 =2,b 2 =4,∴b n =2n.--------------(15分) (注:没有证明数列{b n }是等差数列,直接写出b n =2n,给2分) |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询