设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:①f(?34)<f(152);②当x∈[-1... 设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:①f(?34) <f(152);②当x∈[-1,0]时f(x)=x3+4x+3;③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.其中真命题的个数为(  )A.1个B.2个C.3个D.4个 展开
 我来答
飿銽
2014-11-12 · TA获得超过124个赞
知道答主
回答量:186
采纳率:83%
帮助的人:55.9万
展开全部
①∵函数f(x)是定义在R上的偶函数,∴f(?
3
4
)=f(
3
4
)
=(
3
4
)3?4×
3
4
+3
=
27
64

又∵对于任意的x等式f(x+2)=f(x)恒成立,
∴f(
15
2
)=f(6+
3
2
)=f(
3
2
)=f(2-
1
2
)=f(?
1
2
)=f(
1
2
)=(
1
2
)3?4×
1
2
+3
=
1
8
+1
>f(?
3
4
).
故可知①正确.
②当x∈[-1,0]时,则-x∈[0,1],于是f(x)=f(-x)=(-x)3-4(-x)+3=-x3+4x+3≠x3+4x+3.
故可知②不正确.
③因为f(x)=3x2-4,所以当x∈[0,1]时,恒有f(x)<0成立,故f(x)在x∈[0,1]时单调递减.
又因为f(0)=3,f(1)=0,所以f(x)=0在x∈[0,1]时有且只有一个根1;同理f(x)=0在x∈[-1,0]上有且只有一个根-1.
又因为对于任意的x等式f(x+2)=f(x)恒成立,所以有f(-1)=f(1)=f(3)=f(5)=…;
故f(x)(x≥0)的图象与x轴的交点的横坐标为:1,3,5,….是由小到大构成一个无穷等差数列{2n-1}.
故③正确.
④由③可知f(x)在x∈[0,1]时单调递减,且0≤f(x)≤3,
则函数y=f(x)与y=|x|的图象在x∈[0,1]上有且只有有一个交点,即方程f(x)=|x|在x∈[0,1]上有且只有一个根,设为x1
由于函数f(x)是定义在R上的偶函数,所以f(-x1)=f(x1)=|-x1|,即-x1也是方程f(x)=|x|的一个根.
同理,方程f(x)=|x|分别在x∈[1,2]、[2,3]上各有一个根,设为x2,x3;易知,方程f(x)=|x|分别在x∈[-2,-1]、[-3,-2]上亦各有一个根,且为-x2,-x3
在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|无根.
综上可知:方程f(x)=|x|在x∈[-3,4]上共有6个根.因此④不正确.
综上可知①、③正确.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式