
如图 已知△ABC中,∠BAC=90°,AB=AC,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE
如图已知△ABC中,∠BAC=90°,AB=AC,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE....
如图 已知△ABC中,∠BAC=90°,AB=AC,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.
展开
1个回答
展开全部
证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.
∴∠ABD=∠DAC.
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS).
∴BD=AE,EC=AD.
∵AE=AD+DE,
∴BD=EC+ED.
∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.
∴∠ABD=∠DAC.
在△ABD和△CAE中,
|
∴△ABD≌△CAE(AAS).
∴BD=AE,EC=AD.
∵AE=AD+DE,
∴BD=EC+ED.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询