已知函数f(x)=ex+2x2-3x.(Ⅰ)求证:函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取

已知函数f(x)=ex+2x2-3x.(Ⅰ)求证:函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据... 已知函数f(x)=ex+2x2-3x.(Ⅰ)求证:函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,e≈1.6,e0.3≈1.3)(Ⅱ)当x≥1时,若关于x的不等式f(x)≥ax恒成立,试求实数a的取值范围. 展开
 我来答
鶳燵栊
推荐于2016-08-29 · 超过60用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:118万
展开全部
解答:(Ⅰ)证明:求导函数可得f'(x)=ex+4x-3,…1分
∵f'(0)=e0-3=-2<0,f'(1)=e+1>0,
∴f'(0)?f'(1)<0. …3分
令 h(x)=f'(x)=ex+4x-3,则h'(x)=ex+4>0,…4分
∴f'(x)在区间[0,1]上单调递增,
∴f'(x)在区间[0,1]上存在唯一零点,
∴f(x)在区间[0,1]上存在唯一的极小值点. …6分
取区间[0,1]作为起始区间,用二分法逐次计算如下:
f'(0.5)≈0.6>0,而f'(0)<0,
∴极值点所在区间是[0,0.5];
又f'(0.3)≈-0.5<0,∴极值点所在区间是[0.3,0.5];
∵|0.5-0.3|=0.2,
∴区间[0.3,0.5]内任意一点即为所求. …9分
(Ⅱ)解:由f(x)≥ax,得ax≤ex+2x2-3x,
∵x≥1,∴a≤
ex+2x2?3x
x
,…10分
g(x)=
ex+2x2?3x
x
,则g′(x)=
(x?1)ex+2x2
x2
,…11分
∵x≥1,∴g'(x)>0,∴g(x)在[1,+∞)上单调递增,
∴gmin(x)=g(1)=e-1,
∴a的取值范围是a≤e-1.  …13分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式