什么是“熵”?

 我来答
百度网友6aeacc457
推荐于2016-12-02 · TA获得超过2.5万个赞
知道大有可为答主
回答量:2857
采纳率:50%
帮助的人:1349万
展开全部



shāng

◎ 物理学上指热能除以温度所得的商,标志热量转化为功的程度。

◎ 科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。亦被社会科学用以借喻人类社会某些状态的程度。

◎ 在信息论中,熵表示的是不确定性的量度。

1.只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。正是依靠能量的这种流动,你才能从能量得到功。

江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。由于这个原因,水就沿着江河向下流入海洋。要不是下雨的话,大陆上所有的水就会全部流入海洋,而海平面将稍稍升高。总势能这时保持不变。但分布得比较均匀。

正是在水往下流的时候,可以使水轮转动起来,因而水就能够做功。处在同一个水平面上的水是无法做功的,即使这些水是处在很高的高原上,因而具有异常高的势能,同样做不了功。在这里起决定性作用的是能量密度的差异和朝着均匀化方向的流动。
熵是混乱和无序的度量.熵值越大,混乱无序的程度越大. 我们这个宇宙是熵增的宇宙.热力学第二定律,体现的就是这个特征. 生命是高度的有序,智慧是高度的有序. 在一个熵增的宇宙为什么会出现生命?会进化出智慧?(负熵) 热力学第二定律还揭示了, 局部的有序是可能的,但必须以其他地方更大无序为代价. 人生存,就要能量,要食物,要以动植物的死亡(熵增)为代价. 万物生长靠太阳.动植物的有序, 又是以太阳核反应的衰竭(熵增),或其他的熵增形势为代价的. 人关在完全封闭的铅盒子里,无法以其他地方的熵增维持自己的负熵. 在这个相对封闭的系统中,熵增的法则破坏了生命的有序. 熵是时间的箭头,在这个宇宙中是不可逆的. 熵与时间密切相关,如果时间停止"流动",熵增也就无从谈起. "任何我们已知的物质能关住"的东西,不是别的,就是"时间". 低温关住的也是"时间". 生命是物质的有序"结构"."结构"与具体的物质不是同一个层次的概念. 就象大厦的建筑材料,和大厦的式样不是同一个层次的概念一样. 生物学已经证明,凡是到了能上网岁数的人, 身体中的原子,已经没有一个是刚出生时候的了. 但是,你还是你,我还是我,生命还在延续. 倒是死了的人,没有了新陈代谢,身体中的分子可以保留很长时间. 意识是比生命更高层次的有序.可以在生命之间传递. 说到这里,我想物质与意识的层次关系应该比较清楚了. 这里之所以将"唯物"二字加上引号. 是因为并不彻底.为什么熵减是这个宇宙的本质,还没法回答. (摘自人民网BBS论坛)

不管对哪一种能量来说,情况都是如此。在蒸汽机中,有一个热库把水变成蒸汽,还有一个冷库把蒸汽冷凝成水。起决定性作用的正是这个温度差。在任何单一的、毫无差别的温度下——不管这个温度有多高——是不可能得到任何功的。

“熵”(entropy)是德国物理学家克劳修斯(Rudolf Clausius, 1822 – 1888)在1850年创造的一个术语,他用它来表示任何一种能量在空间中分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量完全均匀地分布,那么,这个系统的熵就达到最大值。

在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。如果把两个水库连接起来,并且其中一个水库的水平面高于另一个水库,那么,万有引力就会使一个水库的水面降低,而使另一个水面升高,直到两个水库的水面均等,而势能也取平为止。

因此,克劳修斯说,自然界中的一个普遍规律是:能量密度的差异倾向于变成均等。换句话说,“熵将随着时间而增大”。

对于能量从密度较高的地方向密度较低的地方流动的研究,过去主要是对于热这种能量形态进行的。因此,关于能量流动和功-能转换的科学就被称为“热力学”,这是从希腊文“热运动”一词变来的。

人们早已断定,能量既不能创造,也不能消灭。这是一条最基本的定律;所以人们把它称为“热力学第一定律”。

克劳修斯所提出的熵随时间而增大的说法,看来差不多也是非常基本的一条普遍规律,所以它被称为“热力学第二定律”。

2.信息论中的熵:信息的度量单位:由信息论的创始人Shannon在著作《通信的数学理论》中提出、建立在概率统计模型上的信息度量。他把信息定义为“用来消除不确定性的东西”。

Shannon公式:I(A)=-logP(A)

I(A)度量事件A发生所提供的信息量,称之为事件A的自信息,P(A)为事件A发生的概率。如果一个随机试验有N个可能的结果或一个随机消息有N个可能值,若它们出现的概率分别为p1,p2,…,pN,则这些事件的自信息的平均值:

H=-SUM(pi*log(pi)),i=1,2…N。H称为熵。

参考资料: 百科

ssyzcyj
2007-02-02
知道答主
回答量:17
采纳率:0%
帮助的人:0
展开全部
让我们考虑在一个短的时间间隔dt中熵的改变量dS。对理想的机械与实际的机械,情况十分不同。在前一种情形,dS可以完全通过机械与环境之间的交换表达出来。我们可以设计一些实验,其中热是由系统提供的,而不是流进系统的。与之相应的熵的改变量就只是改变它的符号。因此,这种对熵的贡献(我们称作deS),就其符号可正可负这个意义来讲,是可逆的。在实际的机械中,情况根本不同。这里除了可逆的交换之外,我们还有在系统内部的不可逆过程,诸如热损耗、摩擦等。这些不可逆过程引起系统内部熵的增加或“熵产生”。这个熵的增加(我们称作dS)不能通过与外界作逆的热交换来改变其符号。正如一切不可逆过程(例如热传导)的情形那样,熵产生总是在同一方向上进行的。换句话说,dS只能是正的,或是在没有不可逆过程时为零。注意,diS的正号只是习惯上选用的,它当初也完全可以被选择为负的。要点是这个改变量是单调的,即熵产生不会随着时间的前进而改变符号。
选择deS与drS这种记法,是为了提醒读者注意,第一项关系到与外界的交换(e是exchanges的首字母),而第二项指系统内部(i是inside的首字母)的不可逆过程。因此,熵的改变量dS是deS与diS这两项之和,而deS与diS具有完全不同的物理定义。
为了掌握熵的改变量这样分解为两部分的特点,我们可以把我们的表述用在能量上。让我们把能量记作E,而能量在短的时间间隔dt内的改变量记作dE。我们当然仍可把dE 写作两项之和,其中一项是deE,它来自能量的交换,另一项drE联系着能量的“内部产生”。不过,能量守恒原理指出,能量只能从一个地方传递到另一地方,而永远不会被“产生”出来。因此,能量的改变量dE约化为deE。另一方面,如果我们取一个非守恒的量,比如某个容器中所含有的氢分子的数量,那末这个量就的确不仅会由于向容器中增添氢而改变,也会通过容器内部发生的化学反应而改变。但是在这种情况下,“产生”这一项的符号是不确定的。按照不同条件,我们可以产生氢分子,也可以用把氢原子传给其他化学组分的方法消灭氢分子。第二定律独特的地方在于这样的事实:产生项diS永远是正的。熵产生表示出在系统内部发生了不可逆的变化。
克劳修斯能够用系统获得(或提供)的热量来定量地表达熵流deS。在被可逆性与守恒性概念所统治的世界中,他主要关心的就是这一点。在涉及到熵产生中所包含的不可逆过程时,他只说到存在着不等式diS/dt>0。尽管如此,还是取得了重要进步,因为如果我们离开卡诺循环,考虑其他热力学系统,就依然可以作出熵流与熵产生之间的区分。对于一个与周围环境没有任何交换的孤立系统,熵流按照定义等于零。只剩下熵产生这一项,并且系统的熵只能增加或者保持不变。于是这里不再有把不可逆变化看作是可逆变化的近似的问题,增加着的熵相当于系统自发地进化。这样一来,熵变成了一个“进化的指示器”,或像爱丁顿恰当地所说的“时间之矢”。对一切孤立系统,未来就是熵增加的方向。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
落叶如梦
2007-02-02 · TA获得超过558个赞
知道小有建树答主
回答量:896
采纳率:50%
帮助的人:356万
展开全部
化学热力学中,熵是系统混乱度的量度,越混乱则熵值越大,如气体的熵大于液体大于固体。熵变用以判断过程的自发性,熵是状态函数,过程熵变等于可逆过程的热温上。隔离系统不可能发生熵变小于零的过程。规定绝对零度的完美晶体熵值为零,标准熵是基于此标准测量的熵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友d58100d98
2007-02-02 · TA获得超过115个赞
知道答主
回答量:237
采纳率:0%
帮助的人:0
展开全部
一个系统吸收(或放出)热量与绝对温度之比称之为熵
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
严伯钧
2019-02-15 · 跨界学霸,硬派科普
个人认证用户
严伯钧
采纳数:72 获赞数:102557

向TA提问 私信TA
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式