初中代数

灰无敌大灰狼
2010-11-16 · TA获得超过6583个赞
知道大有可为答主
回答量:1716
采纳率:0%
帮助的人:2681万
展开全部
韦达定理(Weda's Theorem): 一元二次方程ax^2+bx+c (a不为0)中
设两个根为x和y
则x+y=-b/a
xy=c/a
韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)

∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积。
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
定理的证明
设mathx_1/math,mathx_2/math是一元二次方程mathax^2+bx+c=0/math的两个解,且不妨令mathx_1 \ge x_2/math。根据求根公式,有
mathx_1=\frac{-b + \sqrt {b^2-4ac}}/math,mathx_2=\frac{-b - \sqrt {b^2-4ac}}/math
所以
mathx_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac/math,
mathx_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac/math
至于平均数,请问清楚,是什么平均数
百度网友6562620fe
2010-11-01 · 超过11用户采纳过TA的回答
知道答主
回答量:66
采纳率:0%
帮助的人:37.7万
展开全部
什么?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式