如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC,说明cb=cd (两种方法)

 我来答
sh5215125
高粉答主

2015-05-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:6089万
展开全部

【证法1】

连接BD。

∵AB=AD,

∴∠ABD=∠ADB,

∵∠ABC=∠ADC,

∴∠ABC-∠ABD=∠ADC-∠ADB

即∠CBD=∠CDB,

∴CB=CD。

【证法2】

作AE⊥BC,AF⊥CD,分别交CB、CD延长线于E、F,(不知原图,假设∠ABC和∠ADC是钝角)连接AC。

则∠E=∠F=90°,

∵∠ABC=∠ADC,

∴∠AEB=∠ADF(等角的补角相等)

又∵AB=AD,

∴△AEB≌△AFD(AAS),

∴AE=AF,BE=DF,

又∵AE=AF,AC=AC

∴Rt△AEC≌Rt△AFC(HL)

∴CE=CF,

∴CE-BE=CF-DF,

即CB=CD。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式