小学数学:请介绍一下"抽屉原理"
小学数学:抽屉原理(鸽巢问题)
假如有4只鸽子,要飞回3个巢穴,会出现什么情况呢?
我们先做“最坏的打算”,每个巢穴飞入1只鸽子,剩下的鸽子无论飞入哪一个巢穴,总有1个巢穴至少有2只鸽子。
假如有三个抽屉,妈妈买回4个苹果,让你把苹果放进三个抽屉中,会出现哪些情况呢?
我们可以先把4分为几个整数的和,则有如下四种情况:
4=4+0+0
4=3+1+0
4=2+2+0
4=2+1+1
观察上面的四种放苹果的方式,我们发现一个共同的性质:无论哪种放置方法,总有一个抽屉放入了2个或者多于2个苹果。也就是说,将4个苹果放入3个抽屉,总有一个抽屉里至少放入了2个苹果。
如果增加苹果的个数,把5个苹果放入4个抽屉,无论用哪一种方法放,必有一个抽屉至少放入了2个苹果,这就是抽屉原理:
有m件物品,放进n个抽屉里去。如果物品比抽屉数多(即m大于n),那么,必有一个抽屉要放进两件或两件以上的物品。
例1:三个小朋友同行,其中必有两个小朋友性别相同。
分析:人的性别只有“男”和“女”两种,我们把两种性别当做两个“抽屉”,把三个小朋友比做“苹果”,“苹果”数3比“抽屉数”2多。按照抽屉原理,至少有一个“抽屉”里有两个或两个以上“苹果”,也就是说至少有连个小朋友性别相同。
例2:李师傅正在修理一台机器,工具箱里有4对颜色分别为红、黄、蓝、白的螺帽,可是房间内的灯泡突然坏了,李师傅只好将螺帽拿到房间外辨认,请问李师傅至少要拿几颗螺帽,才能保证其中有一对颜色相同?
分析:
① 如果李师傅只拿两只螺帽能保证颜色相同吗?
② 如果开始拿两只颜色分别为红的、黄的,再拿一只能保证有一对颜色相同吗?再拿两只呢?为什么?
③ 至少拿几只,就能保证有两只螺帽颜色相同?
④ 如果螺帽为红、黄、蓝、白、黑五种颜色,则至少拿几只,才能保证有一对颜色相同?你发现其中的规律了吗?
解:李师傅至少要拿5只螺帽,才能保证其中有一对颜色相同。
例3:口袋里有4种不同颜色的玻璃球,每次摸出2个。要保证有10次摸出的结果是一样的,最少要摸多少次?
分析:当摸出的两个球颜色相同时,可以有4种不同的结果。当摸出来的两个球颜色不同时,最多可以有3+2+1=6(种)不同结果。把4+6=10(种)不同结果作为抽屉。
解:因为要10次摸出的结果相同,根据抽屉原则,至少要摸9×10+1=91(次)。
例4:一个盒子里装有红、黄、蓝三种颜色的果冻各10个,问最少要取多少个才能保证其中至少有两对颜色不相同的果冻?
分析:要保证至少有2对果冻颜色不相同,从最不利的情况出发,先取了10个同一颜色的果冻,剩下的两种颜色局可以看作2个抽屉,就能求得结果。
解:如果取了10个颜色相同的果冻,那么剩下两种颜色的果冻可以看作2个抽屉,比抽屉数多1,也就是取3个果冻就一定能得到颜色相同的另一对果冻了。这样至少取13个果冻才能保证至少有两对颜色不同的果冻。
例5:一个纸盒里面有一些颜色不同的小球其中黄球10个,白球9个,黑球8个,紫球2个,小明闭着眼睛取出若干,他至少取出多少个球,才能保证至少有4个球颜色相同?
分析:要取出颜色相同的4个小球,只能是黄、白、黑3种颜色,不可能是紫球,因为紫球只有2个。假设运气非常不好,正好取到了2个紫球,那么剩下的就只有黄、白、黑3种颜色,把这三种颜色看作3个抽屉。
解:假设已取到2个紫球,剩下的黄、白、黑三种球看作3个抽屉,每个抽屉中放入3个球,那么就要取3×3=9(个),如果多取一个球,就能保证4个球颜色相同。即2+9+1=12(个)球,才能保证有4个球颜色相同。
例6:在一副扑克牌中,最少拿出多少张,才能保证拿出的牌中四种花色都有?
分析:假如一开始就抽到大小王,接着的十三张抽了红心,接下来的十三张抽了黑桃,再接下来十三张抽了红方块,这时就是2+13×3=41,下一张他必定得抽黑方块41+1=42(张)。
解:2+13×3+1=42(张)
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两
个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
详见:
http://baike.baidu.com/subview/8899/8899.htm