高一数学函数问题 急!

要详细的解答过程,好的追分!设奇函数f(x)是定义在(-∞,+∞)上的增函数,若不等式f(ax+6)+f(2-x2)<0对于任意x∈[2,4]都成立,求实数a的取值范围。... 要详细的解答过程,好的追分!
设奇函数f(x)是定义在(-∞,+∞)上的增函数,若不等式f(ax+6)+f(2-x2)<0对于任意x∈[2,4]都成立,求实数a的取值范围。
那个f(2-x2)是f(2-x的平方)
展开
hwm861112
2010-11-02 · TA获得超过1809个赞
知道小有建树答主
回答量:413
采纳率:100%
帮助的人:307万
展开全部
解:因为f(x)是奇函数
所以f[-(2-x2)]=-f(2-x2)
即f(x2-2)=-f(2-x2)
由不等式f(ax+6)+f(2-x2)<0 (x∈[2,4])得
f(ax+6)< -f(2-x2)=f(x2-2) (x∈[2,4])
因为f(x)是定义在(-∞,+∞)上的增函数
所以对任意x∈[2,4],ax+6<x2-2 都成立
即对任意x∈[2,4]时,x2-ax-8>0恒成立
设g(x)=x2-ax-8,其判别式大于0,依题意有对任意x∈[2,4],g(x)的最小值大于0
x=a/2为g(x)的对称轴
故当a/2<2,即a<4时,g(x)在[2,4]上为增函数
g(2)为最小值,g(2)=-2a-4>0,即a<-2
当2≤a/2≤4,即4≤a≤8时,g(a/2)为最小值
g(a/2)=-(a2/4+8),g(a/2)恒小于0 (舍)
当a/2>4,即a>8时,g(x)在[2,4]上为减函数
g(4)为最小值,g(4)=-4a+8>0,即a<2,因为a>8,故舍去
综上所述a<-2时,不等式f(ax+6)+f(2-x2)<0对于任意x∈[2,4]都成立

打字太麻烦了,我都打了半小时了,才打这么多,累。不打了,思路已经很明白了,你接着讨论就ok了
昨天晚上没时间把答案写完,今天补全了
请采纳。。。。
我梦飞翔99
2010-11-01
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
因为f(x)是奇函数,所以f(2-2x)=-f(2x+2)
又因为f(x)为增函数,所以ax+6<2x+2 所求a为直线的斜率
当x∈[2,4]时,0<a<1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式