什么是偏回归系数,它与简单线性回归的回归系数有什么不同
偏回归系数是指是多元回归问题出现的一个特殊性质。设自变量x1,x2,…,xm与因变量y都具有线性关系,可建立回归方程:ŷ=b0+b1x1+b2x2+…+bmxm。式中b1,b2,…,bm为相应于各自变量的偏回归系数。
两者区别如下:
一、指代不同
1、线性回归系数:在回归方程中表示自变量x 对因变量y 影响大小的参数。
2、偏回归系数:当其他的各自变量都保持一定时,指定的某一自变量每变动一个单位,因变量y增加或减少的数值。
二、特性不同
1、线性回归系数:回归系数越大表示x 对y 影响越大,正回归系数表示y 随x 增大而增大,负回归系数表示y 随x增大而减小。例如回归方程式Y=bX+a中,斜率b称为回归系数,表示X每变动一单位,平均而言,Y将变动b单位。
2、偏回归系数:是多元回归问题出现的一个特殊性质。设自变量x1,x2,…,xm与因变量y都具有线性关系,可建立回归方程:ŷ=b0+b1x1+b2x2+…+bmxm。式中b1,b2,…,bm为相应于各自变量的偏回归系数。
三、用处不同
1、线性回归系数:是检验某些回归系数是否为零的假设检验。
2、偏回归系数:是多元回归问题出现的一个特殊性质,把对偏回归系数的讨论,限定为只有2个解释变量的系统。
参考资料来源:百度百科-偏回归系数
参考资料来源:百度百科-回归系数
2024-10-28 广告
简单线性回归模型只有一个解释变量,回归系数表示解释变量的单位变动对被解释变量平均值的影响。多元线性回归模型中的回归系数是偏回归系数,是当控制其它解释变量不变的条件下,某个解释变量的单位变动对被解释变量平均值的影响,从而可以实现保持某些控制变量不变的情况下,分析所关注的变量对被解释变量的真实影响。
两者区别如下:
一、指代不同
1、线性回归系数:在回归方程中表示自变量x
对因变量y
影响大小的参数。
2、偏回归系数:当其他的各自变量都保持一定时,指定的某一自变量每变动一个单位,因变量y增加或减少的数值。
二、特性不同
1、线性回归系数:回归系数越大表示x
对y
影响越大,正回归系数表示y
随x
增大而增大,负回归系数表示y
随x增大而减小。例如回归方程式Y=bX+a中,斜率b称为回归系数,表示X每变动一单位,平均而言,Y将变动b单位。
2、偏回归系数:是多元回归问题出现的一个特殊性质。设自变量x1,x2,…,xm与因变量y都具有线性关系,可建立回归方程:ŷ=b0+b1x1+b2x2+…+bmxm。式中b1,b2,…,bm为相应于各自变量的偏回归系数。
三、用处不同
1、线性回归系数:是检验某些回归系数是否为零的假设检验。
2、偏回归系数:是多元回归问题出现的一个特殊性质,把对偏回归系数的讨论,限定为只有2个解释变量的系统。
参考资料来源:百度百科-偏回归系数
参考资料来源:百度百科-回归系数