已知三角形ABC三个内角所对的边分别是a、b、c。若△ABC的面积为S=a²-(b-c)²,则tan二分之A等
2个回答
展开全部
解:因为 S=(1/2)bc*sin A,
且 S=a^2-(b-c)^2,
所以 (1/2)bc*sin A=a^2-(b-c)^2.
所以 sin A=2[a^2-(b-c)^2]/bc.
由余弦定理得,
cos A=(b^2+c^2-a^2)/2bc.
所以由半角公式得
tan (A/2)=sin A/(1+cos A)
={2[a^2-(b-c)^2]/bc} / {[(b+c)^2-a^2]/2bc}
=4[a^2-(b-c)^2] / [(b+c)^2-a^2].
不知对不对。这道题太复杂了,用到半角公式。
且 S=a^2-(b-c)^2,
所以 (1/2)bc*sin A=a^2-(b-c)^2.
所以 sin A=2[a^2-(b-c)^2]/bc.
由余弦定理得,
cos A=(b^2+c^2-a^2)/2bc.
所以由半角公式得
tan (A/2)=sin A/(1+cos A)
={2[a^2-(b-c)^2]/bc} / {[(b+c)^2-a^2]/2bc}
=4[a^2-(b-c)^2] / [(b+c)^2-a^2].
不知对不对。这道题太复杂了,用到半角公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询