原函数为周期函数,导函数为周期函数吗
展开全部
导数是周期函数,原函数不一定是周期函数。
如导函数为sinx+3,是周期函数。其原函数-cosx+3x就不是周期函数。
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。
典型的周期函数:
sin x,cos x,tan x,cot x 等所有的三角函数都是周期函数。周期函数的定义域一定是无限集合,定义在有限集合上的函数都不是周期函数。
任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
展开全部
不是,比如导函数为sinx+2是周期函数.但因为sinx+2>0因此原函数-cosx+2x一直是增函数,当然就不是周期函数
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是周期函数。
而且与原函数的周期相等。周期函数是指f(x)=f(x+t),对定义域内的x,t是其周期,则f'(x)=lim((f(x+Δx)-f(x))/Δx)=lim((f(x+t+Δx)-f(x+t))/Δx)=f'(x+t),所以f'(x)也是以t为周期的周期函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
而且与原函数的周期相等。周期函数是指f(x)=f(x+t),对定义域内的x,t是其周期,则f'(x)=lim((f(x+Δx)-f(x))/Δx)=lim((f(x+t+Δx)-f(x+t))/Δx)=f'(x+t),所以f'(x)也是以t为周期的周期函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询