MYSQL索引问题:索引在查询中如何使用?看了很多资料都只说索引的建立。是否建立了就不用再理会?

在表中建立了索引,在查询语句中如何运用索引?还有多列索引是如何?... 在表中建立了索引,在查询语句中如何运用索引?还有多列索引是如何? 展开
 我来答
wangzhiqing999
推荐于2017-11-23 · TA获得超过1.6万个赞
知道大有可为答主
回答量:7048
采纳率:100%
帮助的人:3376万
展开全部
假如你有一个表,

SQL> CREATE TABLE test_tab (
2 id INT,
3 name VARCHAR(10),
4 age INT,
5 val VARCHAR(10)
6 );

你的业务,有一个查询,是
SELECT * FROM test_tab WHERE name = 一个外部输入的数据

刚开始,数据不多的时候,执行效果还不错。
随着数据量的增加,这个查询,执行起来,越来越慢了。

然后在 name 上面 建立了索引
CREATE INDEX idx_test4_name ON test_tab (name );
这样, 可以加快前面那个查询的速度。

但是,某天,你执行了下面这个SQL, 发现速度又慢了
SELECT * FROM test_tab WHERE age = 25
为啥呢? 因为 age 字段上面,没有索引
索引只在 name 上面有

换句话说, 也就是 WHERE 里面的条件, 会自动判断,有没有 可用的索引,如果有, 该不该用。

多列索引,就是一个索引,包含了2个字段。

例如:
CREATE INDEX idx_test_name_age ON test_tab (name, age);

那么
SELECT * FROM test_tab
WHERE
name LIKE '张%'
AND age = 25
这样的查询,将能够使用上面的索引。

多列索引,还有一个可用的情况就是, 某些情况下,可能查询,只访问索引就足够了, 不需要再访问表了。例如:

SELECT
AVG( avg ) AS 平均年龄
FROM
test_tab
WHERE
name LIKE '张%'

这个时候, name 与 age 都包含在索引里面。 查询不需要去检索表中的数据。
EdisonChan1982
2010-11-02 · TA获得超过451个赞
知道小有建树答主
回答量:134
采纳率:0%
帮助的人:85.2万
展开全部
语法:

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
[USING index_type]
ON tbl_name (index_col_name,...)
index_col_name:
col_name [(length)] [ASC | DESC]

例:

CREATE INDEX id_index USING BTREE ON t_test (id);

这样就创建了一个t_test表id字段的索引。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱可生云数据库
2020-03-31 · MySQL开源数据库领先者
爱可生云数据库
爱可生,金融级开源数据库和数据云服务整体解决方案提供商;优秀的开源数据库技术,企业级数据处理技术整体解决方案提供商;私有云数据库云服务市场整体解决方案提供商。
向TA提问
展开全部

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。
1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 select * from T where k between 3 and 5; 需要执行几次树的搜索操作,会扫描多少行?mysql> create table T (    -> ID int primary key,    -> k int NOT NULL DEFAULT 0,    -> s varchar(16) NOT NULL DEFAULT '',    -> index k(k))    -> engine=InnoDB;mysql> insert into T values(100,1, 'aa'),(200,2,'bb'),\      (300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
这分别是 ID 字段索引树、k 字段索引树。 

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?
2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 select ID from T wherek between 3 and 5;,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 (name,sex,age) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 (张三,F,26) 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

  • # 有这样一个表 P

  • mysql> create table P (id int primary key, name varchar(10) not null, sex varchar(1), age int, index tl(name,sex,age)) engine=IInnoDB;

  • mysql> insert into P values(1,'张三','F',26),(2,'张三','M',27),(3,'李四','F',28),(4,'乌兹','F',22),(5,'张三','M',21),(6,'王五','M',28);

  • # 下面的语句结果相同

  • mysql> select * from P where name='张三' and sex='F';     ## A1

  • mysql> select * from P where sex='F' and age=26;         ## A2

  • # explain 看一下

  • mysql> explain select * from P where name='张三' and sex='F';

  • +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

  • | id | select_type | table | partitions | type | possible_keys | key  | key_len | ref         | rows | filtered | Extra       |

  • +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

  • |  1 | SIMPLE      | P     | NULL       | ref  | tl            | tl   | 38      | const,const |    1 |   100.00 | Using index |

  • +----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+

  • mysql> explain select * from P where sex='F' and age=26;

  • +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

  • | id | select_type | table | partitions | type  | possible_keys | key  | key_len | ref  | rows | filtered | Extra                    |

  • +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

  • |  1 | SIMPLE      | P     | NULL       | index | NULL          | tl   | 43      | NULL |    6 |    16.67 | Using where; Using index |

  • +----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+

  • 可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。
  • 2.3 索引下推

  • 以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的mysql> select * from tuser where name like '张%' and age=26 and sex=M;

  • 通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。
  • 2.4 隐式类型转化

  • 隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案:
  • 修改表结构,修改字段数据类型。
  • 修改应用,将应用中传入的字符类型改为与表结构相同类型。

  • 3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。
  • 3.2 扫描行数

  • MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。# 通过 show index 方法,查看索引的基数mysql> show index from t;+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| t     |          0 | PRIMARY  |            1 | id          | A         |       95636 |     NULL | NULL   |      | BTREE      |         |               || t     |          1 | a        |            1 | a           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               || t     |          1 | b        |            1 | b           | A         |       96436 |     NULL | NULL   | YES  | BTREE      |         |               |+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

  • MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。
  • 在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

  • on 表示统计信息会持久化存储。默认 N = 20,M = 10。

  • off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

  • 由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。
  • 可以用 analyze table 来重新统计索引信息,进行修正。

  • ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

  • 3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式