已知关于x的方程x的平方-(2k+1)x+4(k-1/2)=0 (1)求证:这个方程总有两个实数根

(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个实数根,求△ABC的周长。要详细过程。... (2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个实数根,求△ABC的周长。
要详细过程。
展开
爱教育爱思考2021
高能答主

2019-04-21 · 我是教育培训达人,专注于教育科技信息分享
爱教育爱思考2021
采纳数:92 获赞数:35186

向TA提问 私信TA
展开全部

证明过程如下:

证明:已知方程x²-(2k+1)x+4(k-1/2)=0

根据一元二次方程根的判别式公式:△=(-(2k+1))²-4*1*4(k-1/2)

则,△=4k²-12k+12=4(k²-3k+3)

=4(k-3/2)²+3

由于(k-3/2)²≥0,则4(k-3/2)²+3≥3>0

即判别式△>0

因此可以证明该方程一定有两个实数根

扩展资料:

1、一元二次方程判别式

对于一元二次方程ax²+bx+c=0(a≠0),则根的判别式公式为:△=b²-4ac。

(1)当△=b²-4ac>0时,方程有两个不相等的实数根。

(2)当△=b²-4ac=0时,方程有两个相等的实数根。

(3)当△=b²-4ac<0时,方程没有实数根。

2、一元二次方程的求解公式

对于一元二次方程ax²+bx+c=0(a≠0),当判别式△=b²-4ac≥0时,方程的求解公式为:

x=(-b±√(b²-4ac))/(2a)。

参考资料来源:百度百科-一元二次方程

chenzuilangzi
推荐于2017-11-23 · TA获得超过2.1万个赞
知道大有可为答主
回答量:1987
采纳率:0%
帮助的人:1156万
展开全部
1.
x²-(2k+1)x+4(k-1/2)=0
△=(2k+1)²-16(k-1/2)
=4k²-12k+9
=4(k²-3k+9/4)
=4(k-3/2)²≥0
∴这个方程总有两个实数根
2.
①若a是底边长,则b=c
即△=4(k-9/2)²=0,k=3/2,
根据根与系数关系(韦达定理)得
b+c=2k+1=4=a ,所以不满足 (因为b+c>a)
②若a是腰长,设令一腰为b=a=4
把一根4代入方程,得k=5/2
根据根与系数关系(韦达定理)得
b+c=2k+1=6>a,
c=2
C=a+b+c=10
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
a912085741
2012-09-09 · TA获得超过758个赞
知道答主
回答量:114
采纳率:0%
帮助的人:22.5万
展开全部
1) Δ=[-(2k+1)]^2-4×4(k-1/2)
=(2k-3)^2
≥0
所以无论k取何值,这个方程总有实数根

(3)等腰三角形ABC的边长a=4
若b=a=4或c=a=4
代入方程:16-4(2k+1)+4(k-1/2)=0
解得:k=5/2
方程为x^2-6x+8=0.
解得c=2或b=2
三角形ABC的周长=4+4+2=10
若b=c
方程x^2-(2k+1)x+4(k-1/2)=0有两相等的实数根b,c
Δ=[-(2k+1)]^2-4×4(k-1/2)=0
解得:k=3/2
方程为x^2-4x+4=0
解得b=c=2
三角形ABC的周长=4+2+2=8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
雪莉萌曦
2012-08-11 · TA获得超过583个赞
知道答主
回答量:251
采纳率:0%
帮助的人:76.4万
展开全部
x²-(2k+1)x+4(k-1/2)=0
△=(2k+1)²-16(k-1/2)
=4k²-12k+9
=4(k²-3k+9/4)
=4(k-3/2)²≥0
∴这个方程总有两个实数根

①若a是底边长,则b=c
即△=4(k-9/2)²=0,k=3/2,
根据根与系数关系(韦达定理)得
b+c=2k+1=4=a ,所以不满足 (因为b+c>a)
②若a是腰长,设令一腰为b=a=4
把一根4代入方程,得k=5/2
根据根与系数关系(韦达定理)得
b+c=2k+1=6>a,
c=2
C=a+b+c=10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式