质点的运动方程和质点的轨道方程的区别?

 我来答
风格大气
2018-08-27 · TA获得超过2.5万个赞
知道答主
回答量:2
采纳率:100%
帮助的人:1.5万
展开全部

在一个选定的参考系中,当质点运动时,它的位置P(x,y,z)是按一定规律随时刻t而改变的,所以位置是t的函数,这个函数可表示为:

x=x(t) ,y=y(t),z=z(t)

它们叫做质点的运动学方程(kinematical equation)。

质点的轨道方程,也叫轨迹方程,表示质点运动的曲线方程,表达式为:y=f(x)。

二者的区别主要有:

轨迹方程是x和y的函数,运动方程是x与t的函数。

质点的运动方程和轨迹方程可以互相转换。

前者可以看做向量,后者可以看出是函数关系。

拓展资料

质点就是有质量但不存在体积或形状的点,是物理学的一个理想化模型。在物体的大小和形状不起作用,或者所起的作用并不显著而可以忽略不计时,我们近似地把该物体看作是一个只具有质量而其体积、形状可以忽略不计的理想物体,用来代替物体的有质量的点称为质点(mass point,particle)。

要把物体看作质点,就要看所研究问题的性质,而与物体本身无关。所以,能否将物体看作质点需要满足其中之一:

当物体的大小与所研究的问题中其他距离相比为极小时。

一个物体各个部分的运动情况相同,它的任何一点的运动都可以代表整个物体的运动。

理想化条件下,满足条件有:

(1)物体上所有点的运动情况都相同,可以把它看作一个质点。

(2)物体的大小和形状对研究问题的影响很小,可以把它看作一个质点。

(3)转动的物体,只要不研究其转动且符合第2条,也可看成质点。

可视为质点的运动物体有以下两种情况:

(1)运动物体的形状和大小跟它所研究的问题相比可忽略不计,如研究地球绕太阳的公转,可把地球当作一质点。

(2)做平动的物体,由于物体上各点的运动情况相同,可以用一个点代表整个物体的运动。

相关说明

1、质点是一个理想化的模型﹐它是实际物体在一定条件下的科学抽象。

2、质点不一定是很小的物体﹐只要物体的形状和大小在所研究的问题中属于无关因素或次要因素﹐即物体的形状和大小在所研究的问题中影响很小时﹐物体就能被看作质点。它注重的是在研究运动和受力时物体对系统的影响,忽略一些复杂但无关的因素。

3、在理论力学中,一个物体常常抽象为它的重心,尤其在静力学和运动学中。

质点的基本属性

1.只占有位置,不占有空间,也就是说它是一维的.

2.具有它所代替的物体的全部质量。

参考资料:百度百科:质点

百度网友a7a2b23
2020-03-04
知道答主
回答量:1
采纳率:0%
帮助的人:647
展开全部

       可能以上三位都是以偏重数学的维度来回答这个问题,那我就以概念的角度来阐述我的观点,当然该观点主要是参考教科书上的内容,在下只算是稍作借鉴,偏重抄袭。我认为:

  1. 轨迹方程只能表示质点运动的轨迹,不能反映质点的速度、运动状态等运动量;

  2. 而质点运动学方程能确定质点在任一时刻的位置和速度,从而确定质点的运动状态。

    以上是二者本质上的区别,当然与以上几位的"轨迹方程是x和y的函数,运动方程是x与t的函数。“观点不相冲突,都提到了”时间“上的区别,但是本人的更侧重概念,前面几位朋友更侧重理性与数据。既然都是围绕着这个问题,进行了思考,就没有大对大错之分,只有确切与不确切之别。只希望各位贴主的观点能对大家有用即可!

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吉禄学阁

2016-10-03 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62495

向TA提问 私信TA
展开全部

  质点的运动方程是描述质点随时间变化的函数方程,表达式为r=r(t),在二维坐标系上一般表示为:r(t)=x(t)i+y(t)j.

  质点的轨道方程,也叫轨迹方程,表示质点运动的曲线方程,表达式为:y=f(x).

  二者的区别主要有:

  1. 轨迹方程是x和y的函数,运动方程是x与t的函数。

  2. 质点的运动方程和轨迹方程可以互相转换。

  3. 前者可以看做向量,后者可以看出是函数关系。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ssitong
高粉答主

2016-06-11 · 每个回答都超有意思的
知道大有可为答主
回答量:1.3万
采纳率:90%
帮助的人:5173万
展开全部
运动方程中,必有时间参量(作为自变量),而轨道方程,则不包含时间参量。

一般而言,运动方程常以时间的参数方程出现,而轨道方程则是从参数方程组中消去时间而得到的空间坐标方程。
追问
请问你可以解答大学的问题吗?
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fv...7@163.com
2021-03-22 · TA获得超过1072个赞
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式