天体测量学的与天体力学关系
天所谓经典天文学是指天体测量学和天体力学。天体测量学主要是研究和测量天
体的位置和运动的,它是天文学中最先发展起来的一个分支,可以说,早期天文学的内容就是天体测量学。天体力学是研究天体运动和形状的科学,它是在天体测量学的基础上发展起来的。开普勒提出的行星运动三定律,为天体力学的建立创造了条件。牛顿提出的万有引力定律则奠定了天体力学的基础。18世纪天文学的主流是为了制定历法和航海的需要而进行的精密的子午线观测、月球运动的观测和日地距离的测定等,所以天体测量学占主导地位。但在18世纪末,天体力学取得了与天体测量学并肩的地位。
无线电信号对天体表面进行测量的原理图
天体力学与天体测量学一向是密切配合的,依靠观测太阳、月球、大行星和小行星的大量资料和天体力学的研究方法,总结出太阳系天体(特别是地球和月球)的运动理论。它不但为太阳系演化的研究提供素材,而且是测定天文时间与导航工作的重要依据。在航天时代,天体测量技术的提高与天体力学方法的改进,更是相辅相成,互相推动。例如,研究人造卫星和宇宙飞行器的轨道,研究地球和月球运动的细节,都需要天体力学与天体测量学的配合。对恒星的位置、自行和视差观测所得到的恒星的空间分布和运动状态的资料,是研究天体物理学,特别是研究恒星天文所需的基本资料。对银河系结构、星团和星协动力学演化、双星系统和特殊恒星的研究及宇宙学的研究,都需要依据大量的天体测量资料,这就对天体测量学提出更高的要求。
随着科学技术的发展,探空火箭、人造卫星和探测器的相继发射,突破了地球大气与磁场这两道屏障,赋于天文学以崭新的生命力。气象卫星、测量卫星、地球资源卫星等等从环绕地球的轨道上,居高临下仔细观测地球,使我们对地球的认识大大前进了一步。千百年来,我们对太阳系中的其他天体只能从远处凭跳,可望而不可及。现在,我们既能发射探测月球和各行星的卫星,并已把探测器降落到几个行星表面,直接收集第一手材料。随着观测设备和手段的不断进步,观测的波段也由单一的光学观测发展到全波段观测,使X射线天文学、γ射线天文学、红外天文学和紫外天文学等新的研究领域争放异彩。在空间技术高度发展的21世纪,天文观测研究已由地面观测进入空间时代。