求解初三几何问题?
如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.(1).求证:CP=CD(2).若圆O的直径是2,角A=30度,求图中阴影部分的面积...
如图,AB是圆O的直径,P是弦AC延长线上的一点,且AC=CP,直线PB交圆O于点D.
(1).求证:CP=CD
(2).若圆O的直径是2,角A=30度,求图中阴影部分的面积. 展开
(1).求证:CP=CD
(2).若圆O的直径是2,角A=30度,求图中阴影部分的面积. 展开
3个回答
展开全部
1,由于AB为直径,所以有BC垂直于AP.有因为有AC=CP,所以可以得到三角形ABP为等腰三角形,所以角A等于角P.有因为弧BC对应的圆周角相等,所以角D=角,于是由三角形CDP为等腰三角形,所以CD=CP.
2,面积=三角形DPB-三角形AOC-扇形0BC.
结果为3倍的根号下3-4排/3.
2,面积=三角形DPB-三角形AOC-扇形0BC.
结果为3倍的根号下3-4排/3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:①AD、CD连线,根据圆的性质,∠ADP=90° ∠ACB=90°
⊿ADP中,AC=CP,中线性质有CP=CD
②阴影部分面积=S△ABP-S△AOC-S扇形OBC
BC为⊿ABP的高,BC=2×2sin30°=1,底边=2×cos30°×2=2√3
S△ABP=1/2×2√3×1=√3
△ AOC的高=1×sin30°=0.5,底边=1×cos30°×2=√3
S△AOC=1/2×√3×0.5=√3/4
∵∠OBC=2×30°=60°S扇形OBC=60/360×π×1²=π/6
∴阴影部分面积=√3-√3/4-π/6=3√3/4-π/6
⊿ADP中,AC=CP,中线性质有CP=CD
②阴影部分面积=S△ABP-S△AOC-S扇形OBC
BC为⊿ABP的高,BC=2×2sin30°=1,底边=2×cos30°×2=2√3
S△ABP=1/2×2√3×1=√3
△ AOC的高=1×sin30°=0.5,底边=1×cos30°×2=√3
S△AOC=1/2×√3×0.5=√3/4
∵∠OBC=2×30°=60°S扇形OBC=60/360×π×1²=π/6
∴阴影部分面积=√3-√3/4-π/6=3√3/4-π/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询