已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC于点M,N,
.当∠MAN绕点A旋转到如图(2)的位置时,线段BM,DN和MN之间又怎样的数量关系?请直接写出你的猜想.请写出完整的做题过程...
.当∠MAN绕点A旋转到如图(2)的位置时,线段BM,DN和MN之间又怎样的数量关系?请直接写出你的猜想.
请写出完整的做题过程 展开
请写出完整的做题过程 展开
1个回答
展开全部
取坐标系B(0,0),C(1,0).A(0,1),设M(-a,0)[0<a<1]
AM斜率=1/a,
AE斜率=(1+1/a)/(1-1/a)=(a+1)/(a-1)
AE方程:y=[(a+1)/(a-1)]x+1,得到N(1,2a/(a-1)),
不难计算:DN=(a+1)/(a-1),MN=(1+a²)/(1-a),BM=a.
∴MN+BM=(1+a²)/(1-a)+a=(a+1)/(a-1)=DN.
[抱歉,没有想出平面几何方法。]
AM斜率=1/a,
AE斜率=(1+1/a)/(1-1/a)=(a+1)/(a-1)
AE方程:y=[(a+1)/(a-1)]x+1,得到N(1,2a/(a-1)),
不难计算:DN=(a+1)/(a-1),MN=(1+a²)/(1-a),BM=a.
∴MN+BM=(1+a²)/(1-a)+a=(a+1)/(a-1)=DN.
[抱歉,没有想出平面几何方法。]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询