展开全部
1) ∫ v*lnvdv
=(1/2)∫lnvdv²
=(1/2) [ v²lnv - ∫v²dlnv]
=(1/2) [ v²lnv - ∫vdv]
=(1/2) [ v²lnv - (1/2)v²]
=(1/2)v²lnv - (1/4)v² + c
2) ∫(v+1)/(1-v)dv
= - ∫[ 1 + 2/(v-1)]dv
= - ∫dv - ∫2/(v-1)d(v-1)
= -v - 2ln(v-1) + c
3) ∫(1-v)/(1+v²)dv
= ∫1/(1+v²)dv - ∫v/(1+v²)dv
= arctanv - (1/2)∫1/(1+v²)dv²
= arctanv - (1/2)∫1/(1+v²)d(1+v²)
= arctanv - (1/2)ln(1+v²) + c
=(1/2)∫lnvdv²
=(1/2) [ v²lnv - ∫v²dlnv]
=(1/2) [ v²lnv - ∫vdv]
=(1/2) [ v²lnv - (1/2)v²]
=(1/2)v²lnv - (1/4)v² + c
2) ∫(v+1)/(1-v)dv
= - ∫[ 1 + 2/(v-1)]dv
= - ∫dv - ∫2/(v-1)d(v-1)
= -v - 2ln(v-1) + c
3) ∫(1-v)/(1+v²)dv
= ∫1/(1+v²)dv - ∫v/(1+v²)dv
= arctanv - (1/2)∫1/(1+v²)dv²
= arctanv - (1/2)∫1/(1+v²)d(1+v²)
= arctanv - (1/2)ln(1+v²) + c
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询