极限函数lim(1+X^2)^1/3-1等价于1/3X^2是怎么来的
展开全部
lim(x→1)[x^(1/3)-1]/(x-1)恰是f(x)=x^(1/3)在x=1处的导函数f'(x)=1/[3x^(2/3)]
所以lim(x→1)[x^(1/3)-1]/(x-1)=f'(1)=1/3
极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。
扩展资料
求极大极小值步骤
(1)求导数f'(x);
(2)求方程f'(x)=0的根;
(3)检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
特别注意
f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。
求极值点步骤
(1)求出f'(x)=0,f"(x)≠0的x值;
(2)用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
(3)上述所有点的集合即为极值点集合。
展开全部
方法一:lim(x→1)[x^(1/3)-1]/(x-1)恰是f(x)=x^(1/3)在x=1处的导函数f'(x)=1/[3x^(2/3)]所以lim(x→1)[x^(1/3)-1]/(x-1)=f'(1)=1/3方法二:因为是0/0形式,用罗比塔法则lim(x→1)[x^(1/3)-1]/(x-1)=lim(x→1)[1/3x^(2/3)]/1=1/3方法三:x^(1/3)=(x-1+1)^(1/3)利用级数x^(1/3)-1=(x-1)/3-(x-1)^2/9+……所以lim(x→1)[x^(1/3)-1]/(x-1)=lim(x→1)[1/3-(x-1)/9+……]=1/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1+a)^b-1,当a趋于0时,原式=a*b
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询