java7和java8对hashmap做了哪些优化

 我来答
育知同创教育
2016-10-31 · 百度知道合伙人官方认证企业
育知同创教育
1【专注:Python+人工智能|Java大数据|HTML5培训】 2【免费提供名师直播课堂、公开课及视频教程】 3【地址:北京市昌平区三旗百汇物美大卖场2层,微信公众号:yuzhitc】
向TA提问
展开全部
HashMap的原理介绍

此乃老生常谈,不作仔细解说。
一句话概括之:HashMap是一个散列表,它存储的内容是键值对(key-value)映射。

Java 7 中HashMap的源码分析

首先是HashMap的构造函数代码块1中,根据初始化的Capacity与loadFactor(加载因子)初始化HashMap.
//代码块1
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +loadFactor);

this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}

Java7中对于<key1,value1>的put方法实现相对比较简单,首先根据 key1 的key值计算hash值,再根据该hash值与table的length确定该key所在的index,如果当前位置的Entry不为null,则在该Entry链中遍历,如果找到hash值和key值都相同,则将值value覆盖,返回oldValue;如果当前位置的Entry为null,则直接addEntry。
代码块2
public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}

modCount++;
addEntry(hash, key, value, i);
return null;
}

//addEntry方法中会检查当前table是否需要resize
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length); //当前map中的size 如果大于threshole的阈值,则将resize将table的length扩大2倍。
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}

createEntry(hash, key, value, bucketIndex);
}

Java7 中resize()方法的实现比较简单,将OldTable的长度扩展,并且将oldTable中的Entry根据rehash的标记重新计算hash值和index移动到newTable中去。代码如代码块3中所示,
//代码块3 --JDK7中HashMap.resize()方法
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}

Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

/**
* 将当前table的Entry转移到新的table中
*/
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}

HashMap性能的有两个参数:初始容量(initialCapacity) 和加载因子(loadFactor)。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
根据源码分析可以看出:在Java7 中 HashMap的entry是按照index索引存储的,遇到hash冲突的时候采用拉链法解决冲突,将冲突的key和value插入到链表list中。
然而这种解决方法会有一个缺点,假如key值都冲突,HashMap会退化成一个链表,get的复杂度会变成O(n)。
在Java8中为了优化该最坏情况下的性能,采用了平衡树来存放这些hash冲突的键值对,性能由此可以提升至O(logn)。
代码块4 -- JDK8中HashMap中常量定义
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
static final int TREEIFY_THRESHOLD = 8; // 是否将list转换成tree的阈值
static final int UNTREEIFY_THRESHOLD = 6; // 在resize操作中,决定是否untreeify的阈值
static final int MIN_TREEIFY_CAPACITY = 64; // 决定是否转换成tree的最小容量
static final float DEFAULT_LOAD_FACTOR = 0.75f; // default的加载因子

在Java 8 HashMap的put方法实现如代码块5所示,
代码块5 --JDK8 HashMap.put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; //table为空的时候,n为table的长度
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null); // (n - 1) & hash 与Java7中indexFor方法的实现相同,若i位置上的值为空,则新建一个Node,table[i]指向该Node。
else {
// 若i位置上的值不为空,判断当前位置上的Node p 是否与要插入的key的hash和key相同
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;//相同则覆盖之
else if (p instanceof TreeNode)
// 不同,且当前位置上的的node p已经是TreeNode的实例,则再该树上插入新的node。
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 在i位置上的链表中找到p.next为null的位置,binCount计算出当前链表的长度,如果继续将冲突的节点插入到该链表中,会使链表的长度大于tree化的阈值,则将链表转换成tree。
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

再看下resize方法,由于需要考虑hash冲突解决时采用的可能是list 也可能是balance tree的方式,因此resize方法相比JDK7中复杂了一些,
代码块6 -- JDK8的resize方法
inal Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;//如果超过最大容量,无法再扩充table
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // threshold门槛扩大至2倍
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];// 创建容量为newCap的newTab,并将oldTab中的Node迁移过来,这里需要考虑链表和tree两种情况。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式