已知函数f(x)=2sinx/4cosx/4-2√3sin2x/4+√3(1)求函数f(x)的最小正周期;(2)设△ABC的内角A、B、C的对

已知函数f(x)=2sinx/4cosx/4-2√3sin2x/4+√3(1)求函数f(x)的最小正周期;(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=√... 已知函数f(x)=2sinx/4cosx/4-2√3sin2x/4+√3(1)求函数f(x)的最小正周期;(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=√3,f(c)=0。若向量m=(1,sinA)与向量n=(2,sinB)公线,求△ABC的面积。 展开
是稀饭是美食
2010-11-17 · TA获得超过8283个赞
知道大有可为答主
回答量:1175
采纳率:0%
帮助的人:2523万
展开全部
1. C
原因:令t=sinA+cosA, 则t^2=(sinA+cosA)^2=1+sin(2A)
即sin(2A)=t^2 - 1
题中 F(sinA+cosA)=sinAcosA=(1/2)*sin(2A)
可换为 F (t) =(1/2)*(t^2 - 1)
当t=cos30°时,F(cos30°)= ( 1/2)*[ (cos30°) ^2 - 1 ]
=( 1/2)* [(√3/2)^2 - 1]
= - 1/8

2. C
原因:A、B是锐角三角形的两个内角,可知 0sinA1,0sinB1
当 0x1x21时,0sin(x1)sin(x2)1~~~~~~~~~~~~~~因为sinx在0到π/2是增区间
即有 x1*sin(x1)x2*sin(x2)
则 F(x1)F(x2)
所以 F(X)是增函数
C项中 cosA= sin(π/2 - A) sinB~~~~~~~~~~~~~~因为是锐角三角形,所以角A+Bπ/2 即 π/2 - A B
所以F(cosA) >F(sinB)
又因为F(X)是偶函数~~~~~~~~~~~~~~~~~由F(X)=F(-X)可证
所以 F( - cosA) >F( - sinB)

3. A
原因:Y =2sin(X+π/4)cos(X-π/4)
= (sinx+cosx)(sinx+cosx)~~~~~~~~~~~~~~~~~~~利用公式展开得到
=1+sin(2x)
因为曲线Y和直线Y=1/2在Y轴右边有交点
所以 1+sin(2x)=1/2 中的x就是交点的横坐标 (其中x0)
即 sin(2x)= - 1/2~~~~~~~~~~~~~~~~~~~~2x的值有图象可知
所以 p2 :2x=11π/6即 x=11π/12 p4:2x=23π/6即 x=23π/12
所以|P2P4|=23π/12 -11π/12 =π
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式