求解2个关于极限的问题
1.lim(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}=limcot5x(cos2x+sin3x-...
1.lim(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}=
limcot5x(cos2x+sin3x-1)=lim[(cos2x+sin3x-1)/sin5x]cos5x
(x趋向于0)
2.limln(1+x^2)/y(x)=limx^2/y(x) (x趋向于0,y(0)=0)
请说明以上2等式为何成立
第1题只需说明为何
lim(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}=
limcot5x(cos2x+sin3x-1) (x趋向于0) 展开
limcot5x(cos2x+sin3x-1)=lim[(cos2x+sin3x-1)/sin5x]cos5x
(x趋向于0)
2.limln(1+x^2)/y(x)=limx^2/y(x) (x趋向于0,y(0)=0)
请说明以上2等式为何成立
第1题只需说明为何
lim(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}=
limcot5x(cos2x+sin3x-1) (x趋向于0) 展开
展开全部
第1题是不对的
因为lim<x→0> 1+cos2x+sin3x-1=1
lim<x→0> [cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)→∞
所以是1^∞型极限,运用重要极限 lim(t→0)(1+t)^(1/t)=e:
lim<x→0>(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}
=lim<x→0>(1+cos2x+sin3x-1)^{[1/(cos2x+sin3x-1)]*[cot5x(cos2x+sin3x-1)]}
注意到lim<x→0>(1+cos2x+sin3x-1)^{[1/(cos2x+sin3x-1)]=e (重要极限中t=cos2x+sin3x-1)
所以
lim<x→0>(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}
=lim<x→0>(1+cos2x+sin3x-1)^{[1/(cos2x+sin3x-1)]*[cot5x(cos2x+sin3x-1)]}
=e^lim<x→0> [cot5x(cos2x+sin3x-1)]
=e^lim<x→0> [(cos2x+sin3x-1)/sin5x]cos5x
=e^lim<x→0> (-2sin2x+3cos3x)/5sec²5x
=e^(3/5)
第2题是用的等价无穷小替换
x→0时,ln(1+x²)~x²
∴lim<x→0> ln(1+x^2)/y(x)=lim<x→0> x^2/y(x)
因为lim<x→0> 1+cos2x+sin3x-1=1
lim<x→0> [cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)→∞
所以是1^∞型极限,运用重要极限 lim(t→0)(1+t)^(1/t)=e:
lim<x→0>(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}
=lim<x→0>(1+cos2x+sin3x-1)^{[1/(cos2x+sin3x-1)]*[cot5x(cos2x+sin3x-1)]}
注意到lim<x→0>(1+cos2x+sin3x-1)^{[1/(cos2x+sin3x-1)]=e (重要极限中t=cos2x+sin3x-1)
所以
lim<x→0>(1+cos2x+sin3x-1)^{[cot5x/(cos2x+sin3x-1)](cos2x+sin3x-1)}
=lim<x→0>(1+cos2x+sin3x-1)^{[1/(cos2x+sin3x-1)]*[cot5x(cos2x+sin3x-1)]}
=e^lim<x→0> [cot5x(cos2x+sin3x-1)]
=e^lim<x→0> [(cos2x+sin3x-1)/sin5x]cos5x
=e^lim<x→0> (-2sin2x+3cos3x)/5sec²5x
=e^(3/5)
第2题是用的等价无穷小替换
x→0时,ln(1+x²)~x²
∴lim<x→0> ln(1+x^2)/y(x)=lim<x→0> x^2/y(x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询