如图:
圆、三角形,正多边形、梯形以及平行四边形等为基本图形,其余的的为组合图形,组合图形可作辅助线分解为基本图形。
其中图形是指在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分不具有空间的延展性,它是局限的可识别的形状。
扩展资料
1、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。
2、如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。
3、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。
4、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。
如图:
图形用一组指令集合来描述图形的内容,如描述构成该图的各种图元位置维数、形状等。描述对象可任意缩放不会失真。
在显示方面图形使用专门软件将描述图形的指令转换成屏幕上的形状和颜色。适用于描述轮廓不很复杂,色彩不是很丰富的对象,如:几何图形、工程图纸、CAD、3D造型软件等。
扩展资料
1、两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS";
2、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”;
3、两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”;
4、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”;
5、两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“斜边、直角边”或“HL”;
注:“边边角”即“SSA”和“角角角”即"AAA"是错误的证明方法。