2个回答
展开全部
解析:
cos(5/3)
=sin(π/2-5/3)
=sin[π-(π/2-5/3)]
=sin(π-π/2+5/3)
=sin(π/2+5/3)
~~~~~~~~~
cos(5/3)
=cos(-5/3)
=sin[π/2-(-5/3)]
=sin(π/2+5/3)
~~~~~~~~~
“奇变偶不变,符号看象限”
sin(π/2+5/3)
//π/2=1●(π/2),1是奇数,故函数名要变
//sin→cos
//π/2+5/3是第二象限,故sin(π/2+5/3)为正
//符号“+”
于是,
sin(π/2+5/3)
=+cos(5/3)
=cos(5/3)
PS:
按照口诀多操作几遍,就熟练了。
cos(5/3)
=sin(π/2-5/3)
=sin[π-(π/2-5/3)]
=sin(π-π/2+5/3)
=sin(π/2+5/3)
~~~~~~~~~
cos(5/3)
=cos(-5/3)
=sin[π/2-(-5/3)]
=sin(π/2+5/3)
~~~~~~~~~
“奇变偶不变,符号看象限”
sin(π/2+5/3)
//π/2=1●(π/2),1是奇数,故函数名要变
//sin→cos
//π/2+5/3是第二象限,故sin(π/2+5/3)为正
//符号“+”
于是,
sin(π/2+5/3)
=+cos(5/3)
=cos(5/3)
PS:
按照口诀多操作几遍,就熟练了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询