求大神教高等数学! 10
1个回答
展开全部
将f(t)在x点处泰勒展开,其中x∈[0,1]
f(t)=f(x)+f'(x)(t-x)+f''(k)/2*(t-x)^2,其中k介于t与x之间
将t=0和t=1分别代入上式
f(0)=f(x)-f'(x)*x+f''(ξ)/2*x^2
f(1)=f(x)+f'(x)*(1-x)+f''(η)/2*(1-x)^2
两式相减,因为f(0)=f(1),有
0=f'(x)+f''(η)/2*(1-x)^2-f''(ξ)/2*x^2
f'(x)=f''(ξ)/2*x^2-f''(η)/2*(1-x)^2
|f'(x)|=|f''(ξ)/2*x^2-f''(η)/2*(1-x)^2|
<=|f''(ξ)|/2*x^2+|f''(η)|/2*(1-x)^2
<=2/2*x^2+2/2*(1-x)^2
=1-2x+2x^2
=2(x-1/2)^2+1/2
<=1
f(t)=f(x)+f'(x)(t-x)+f''(k)/2*(t-x)^2,其中k介于t与x之间
将t=0和t=1分别代入上式
f(0)=f(x)-f'(x)*x+f''(ξ)/2*x^2
f(1)=f(x)+f'(x)*(1-x)+f''(η)/2*(1-x)^2
两式相减,因为f(0)=f(1),有
0=f'(x)+f''(η)/2*(1-x)^2-f''(ξ)/2*x^2
f'(x)=f''(ξ)/2*x^2-f''(η)/2*(1-x)^2
|f'(x)|=|f''(ξ)/2*x^2-f''(η)/2*(1-x)^2|
<=|f''(ξ)|/2*x^2+|f''(η)|/2*(1-x)^2
<=2/2*x^2+2/2*(1-x)^2
=1-2x+2x^2
=2(x-1/2)^2+1/2
<=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询