展开全部
y'' = d/dx ( dy/dx) = [d/dy( y')] / dx/dy = y'(dy'/dy)
------------
y^3.y''+1 =0
y'' = -1/y^3
y'dy' = (-1/y^3 ) dy
(1/2)y'^2 = 1/(2y^2) + C'
dy/dx =√( 1/y^2 + C)
------------
y^3.y''+1 =0
y'' = -1/y^3
y'dy' = (-1/y^3 ) dy
(1/2)y'^2 = 1/(2y^2) + C'
dy/dx =√( 1/y^2 + C)
更多追问追答
追答
这样
dy/dx =√( 1/y^2 + C)
dy/dx|x=1 =0, y|x=1 =1
√( 1 + C) =0
C=-1
------------
dy/dx =√( 1/y^2 - 1)
∫ √[y^2/(1-y^2)] dy = ∫ dx
x =∫ y/√(1-y^2) dy
x =-√(1-y^2) +C1
y(1) =1
=>C1=1
x =-√(1-y^2) +1
√(1-y^2) = 1-x
1-y^2 =(1-x)^2
y^2 = 1-(1-x)^2
y =√(2x-x^2)
let
y= sinu
dy= cosy du
∫ y/√(1-y^2) dy
=∫ sinu du
=-cosu +C1
=-√(1-y^2) +C1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询