展开全部
奥斯特洛夫斯基定理,有理函数积分,化为整式部分和纯分式部分,纯分式部分分部分式,整式部分可以用整式的除法求得,分部分式的方法用待定系数法或者长除法,整式部分的积分仍然为整式,分部分式后,所有分式的分子都是常数,所有分数的分母最高为二次多项式(二次多项式时 △<0)分母为一次多项式的积分是对数函数,分母为二次多项式(△<0)的积分是反正切函数,所以有理函数的积分一定可解,而且就是由整式、对数函数、反正切函数所构成,以上是有理函数积分的基本理论和操作要点,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1) ∫x^2/(x^2+1)^2 dx =∫ dx/(x^2+1) - ∫ dx/(x^2+1)^2 =arctanx - ∫dx/(x^2+1)^2 let x= tany dx= (secy)^2 dy ∫dx/(x^2+1)^2 =∫dy/(secy)^2 =∫(cosy)^2 dy =(1/2)∫(1+cos2y) dy =(1/2)[y + (1/2)sin2y] + C' =(1/2)[arctanx + x/(1+x^2)] + C' ∫x^2/(x^2+1)^2 dx =arctanx - ∫dx/(x^2+1)^2 =arctanx - (1/2)[arctanx + x/(1+x^2)] + C =(1/2)[arctanx - x/(1+x^2)] + C (2) t^5 +1 = t^4(t+1) - t^4 +1 =t^4(t+1) - t^3(t+1) + t^3 +1 =t^4(t+1) - t^3(t+1) + t^2(t+1) -t^2 +1 =t^4(t+1) - t^3(t+1) + t^2(t+1) -t(t+1)+ t+1 =t^4(t+1) - t^3(t+1) + t^2(t+1) -t(t+1)+ (t+1) ie t^5 +1 = (t+1)(t^4-t^3+t^2-t+1) (t^5+1)/(t+1) =t^4-t^3+t^2-t+1 ∫ (t^5+1)/(t+1) dt =∫( t^4-t^3+t^2-t+1) dt =(1/5)t^5-(1/4)t^4+(1/3)t^3-(1/2)t^2 +t + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询